Effect of Nitrite and Nitrate as the Source of OH Radical in the O₃/UV Process with or without Benzene[†]

Hyun-Seok Son,[‡] A. J. Saleh Ahammad,[§] Md. Mahbubur Rahman,[§] Kwang-Mo Noh,[#] and Jae-Joon Lee^{‡,§,*}

*Department of Applied Chemistry, Konkuk University, Chungju 380-702, Korea *E-mail : jjlee@kku.ac.kr
 *Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701, Korea
 #Department of Nano Science & Mechanical Engineering, Konkuk University, Chungju 380-701, Korea
 Received March 16, 2011, Accepted June 6, 2011

This study suggests the prediction model for the concentration variation of NO₂⁻ and NO₃⁻ along with the rate constants of all reactions during ozonation under UV radiation (O₃/UV process). While NO₂⁻ was completely converted into NO₃⁻ during the O₃-only process, the production of NO₂ radical or N₂O₄ was expected in the O₃/UV process. In addition, the quenching of OH radicals, by NO₂ radical in the O₃/UV process, resulted in regeneration of NO₂⁻. However, the regeneration of NO₂⁻ was not observed in the O₃/UV process in the presence of C₆H₆ where the concentrations of NO₂⁻ and NO₃⁻ were significantly reduced compared to in the process without C₆H₆. The pseudo-first order rate constants of all species were calculated with and without the presence of C₆H₆ to predict the variation of concentrations of all species during the O₃/UV process. It was suggested that NO₂⁻ and NO₃⁻ in the O₃/UV process can be more effectively removed from an aqueous system with an OH radical scavenger such as C₆H₆.

Key Words : Ozone, UV, OH radical, NO₂⁻, NO₃⁻

Introduction

Hydroxyl radical (OH radical, OH[•]) is a strong and nonselective oxidant that can be considered an alternative degrading agent for persistent organic compounds (POPs).¹ Photochemical processes are potent reactions to generate the OH radical by direct photolysis and photosensitized transformation involving photoexcited molecules such as hydrogen peroxide (H₂O₂), ozone (O₃), and ferrous (Fe²⁺).^{2,3} Although various radicals (¹O₂, ROO[•], CO₃^{-•}, HO₂[•], Cl₂^{-•}, and NO₂[•]) are generated during the photochemical process, OH radical plays the most significant role as an oxidant to elevate the degradation efficiency of many inorganic and organic compounds.³⁻⁶

Ozonation, which is the producing process the OH radical through Eqs. 1 and $2^{7\cdot10}$, is also an effective treatment method for trace organic contaminants in water. However, the generation of OH radical in the O₃-only process is not effective due to the slow rate of Eq. 1 in regard to enhancing the oxidation of pollutants by OH radical.^{11,12}

$$O_3 + OH^- \to OH_2^- + O_2 \quad k_{O_3, OH^-} = 70 \pm 7M^{-1}S^{-1}$$
 (1)

$$O_3 + OH_2^- \to O_2^{--} + OH^+ + O_2 \quad k_{O_3, OH_2^-} = 2.8 \times 10^6 M^{-1} S^{-1}$$
(2)

Although ozonation is effective for microbial disinfection and the oxidation of trace contaminants, O_3 plays a limited role as an oxidant to degrade recalcitrant compounds compared to OH radical due to the lower oxidizing power of O_3 .¹³ Therefore, the enhancement of the concentration of OH radical in the ozonation system is an effective approach to improve the degradation efficiency of contaminants. Rosehfeldt *et al.*¹⁴ reported that the generation of the OH radical was greater in O_3/H_2O_2 than in O_3 -only process and the formation of OH radical was possible only after the firstorder decay of O_3 in the O_3/H_2O_2 process.¹⁵ Ozonation under UV radiation (O_3/UV) provided various pathways for OH radical formation by the phlotolysis of O_3 and generally induced a greater degradation efficiency of nitrobenzene than simply the O_3 -only process.^{16,17}

The photolysis of nitrate (NO₃⁻) in aqueous solution can be considered as one of the sources of the OH radical.¹⁸⁻²⁰ NO₃⁻ being involved with the electron acceptor in biological systems is thermodynamically and biologically very stable and soluble. It is well known that nitrite (NO₂⁻) is oxidized to NO₃⁻ by nitrobacter in soil and water systems.^{21,22} The oxidation of NO₂⁻ to NO₃⁻ is possible by microbial reaction or O₃.²³ Furthermore, the generation of OH radical by the photolysis of NO₃⁻ in UV-B range^{21,22} strongly suggests a possible chain reaction between NO₂⁻ and NO₃⁻ in aqueous system. The chain reaction can be because of the role of NO₃⁻ as the source of OH radical. Therefore, the pathway for the OH radical in the O₃/UV system during the chain reaction between NO₂⁻ and NO₃⁻ needs to be explained in further detail.

In this research, we focussed on examining the overall reaction path along with the role of both NO_2^- and NO_3^- in the generation of OH radical in O_3/UV process. We further suggested a model, with which we can predict the rate constant for the oxidation of NO_2^- . In order to suggest the model of NO_2^- and NO_3^- in O_3/UV system, C_6H_6 was used as the scavenger of the OH radical.

[†]This paper is dedicated to Professor Eun Lee on the occasion of his honourable retirement.

Figure 1. Schematic representation of the O₃/UV system.

Experimental

Chemicals & Experimental Setup. NO₂⁻ and NO₃⁻ was prepared by diluting a 1000 mg L⁻¹ (standard solution for ion chromatography, Fluka) in Nanopure deionization water (R = 18 M cm⁻¹; Barnstead Co., Ltd., Dubuque, IA). Benzene (C₆H₆) from Merck (99.9%) was HPLC or analytical reagent grade.

 O_3 was produced from pure liquid oxygen (O_2 , 99.999%) by the O_3 generator (Sewang C.E.Tech., Korea). O_3/UV system (Fig. 1) was semi-circulation type and O_3 was mixed with the treated water in line before being provided to the reactor. Gas phase O_3 unreacted from reactor was wasted through the O_3 gas destructor, during which the increased thermal state was controlled by the chiller. UV-C lamps (13 W, low pressure UV lamp, Sankyo) in quarts cell were installed in the reactor (10 cm × 10 cm × 40 cm), and their intensity (5.2 mW cm⁻²) was measured by a VLX-3W radiometer (Cole-Parmer, USA).

Analysis. Gas phase O_3 concentration (%, wt) was determined by the O_3 analyzer (model H1, In USA Inc). Dissolved O_3 concentration was calculated by O_3 application rate (Eq. 3) based on absorbance measured with a UV-Visible spectrophotometer (HS-3300, Humus, Korea) at 254 nm.^{24,25}

$$v_{EOP} = \frac{3600(AG_AM)}{\epsilon l} \tag{3}$$

where $V_{EOP} = O_3$ application rate (g h⁻¹), A = absorbance at 254 nm; GA = volumetric flow rate of the anodic gases (O₂ or O₃) (dm³ s⁻¹); e = 3024 dm³mol⁻¹cm⁻¹ is the O₃ aborptivity at 254nm in the gas phase; *l* = optical path length (0.63 cm) and M = ozone molecular weight (48 g mol⁻¹).

Figure 2 shows the concentration relationship between dissolved O_3 and gas phase O_3 , which was formed by the conversion of liquid O_2 through an ozone generator used in this study. O_3 flow rate in Fig. 2, which represented the gas phase of O_3 from the conversion of O_2 , increased with the increase of O_2 flow rate. However, the dissolved O_3 concentration flatted off at an O_2 flow rate of more than 20 L min⁻¹. It is assumed that the self reaction of O_3 occurred with

Hyun-Seok Son et al.

Figure. 2. The influence of O_2 flow rate to generate dissolved O_3 concentration and O_3 flow rate.

an increase of O_3 concentration. Because the reaction between O_3 and other compounds occurred in 30 sec¹⁵, O_3 was injected continuously during the reaction time in this study. In addition, the concentration of O_3 during the reaction was maintained by the lowest level (4.10×10^{-5} M), which was selected in order to induce the low reaction rate.

 NO_2^- and NO_3^- were measured with a DX-120 ion chromatograph (Dionex) using a Dionex Ion Pac AS14 column with a mixture of 3.5 mM Na_2CO_3 and 1 mM $NaHCO_3$ as an eluent. N_2O_4 or NO_2 radical were recognized by the difference between the initial concentration of NO_2^- and the sum of NO_2^- and NO_3^- using the results of previous studies.

C₆H₆, which was extracted via solid phase extraction by C-18 solid cartridges (Waters, USA), was analyzed by gas chromatography (Hewlett Packard 6890) and a mass selective detector (Hewlett Packard 5973) with non-polar capillary column (HP-Ultra 1, 12 m × 0.2 mm × 0.33 µm). The sample (2 µL) was injected into the GC at 250 °C with the splitless condition. The temperature was programmed 70 to 120 °C at a rate of 10 °C min⁻¹ and held for 3 min at 180 °C. The solution pH was measured using a model 52A pH analyzer (Orion, Reno, NV).

Results and Discussion

Kinetic Study. Table 1 shows the pseudo-first order rate constants of the NO_2^- degradation in O_3 -only, and O_3/UV with or without C_6H_6 . NO_2^- was not degraded by photolysis (UV-only) and the degradation rate of NO_2^- in O_3 -only and O_3/UV reactions was not significantly different. Interestingly, the rate constant was much smaller in O_3/UV reaction with C_6H_6 compared to the rate constant in others related to O_3 without C_6H_6 .

As shown in Table 1, the kinetics for the NO_2^- degradation conformed to the pseudo-first rate model in O_3 -only and $O_3/$ UV reactions. The result indicates that the concentration of

Table 1. Pseudo-first order rate constants and R^2 values of NO_2^- degradation for initial 10 min of various reactions ($[NO_2^-]_0$: 3 mM, $[C_6H_6]_0$: 3 mM, $[O_3]$: 0.041 mM, pH: 6.5 ± 0.3).

Reaction type	$k_1 [min^{-1}]$	\mathbb{R}^2
O ₃ -only	0.246 ± 0.013	0.989 ± 0.002
UV-only	0.001 ± 0.000	0.450 ± 0.037
O_3/UV	0.249 ± 0.004	0.972 ± 0.011
O_3/UV with C_6H_6	0.166 ± 0.006	0.977 ± 0.009

 NO_2^- was the rate determining factor. In other words, the concentration of dissolved O_3 can be considered as constant in the experiment condition presented in Table 1. Therefore, the degradation rate model of NO_2^- in the reactions related O_3 was induced, such as Eq. 4.

$$\frac{d[NO_2^-]}{dt} = -k_{2,1}[O_3][NO_2^-] = k_1[NO_2^-]$$
(4)

where $k_{2,1}$ and k_1 was the second-order rate constant $[M^{-1} min^{-1}]$ and pseudo-first order rate constant $[2.78 \times 10^{-1} min^{-1}]$, and $[O_3]$ and $[NO_2^{-}]$ were the concentrations [M] of O_3 and NO_2^{-} , respectively.

Transformation of NO₂⁻ in O₃-only and O₃/UV Reactions. Figure 3 shows the production extents of NO₃⁻ during degrading NO₂⁻ by O₃-only reaction. As shown in Fig. 3(a), the complete mass balance between NO₂⁻ and NO₃⁻ was accomplished in O₃-only reaction where all the NO₂⁻ was converted to NO₃⁻ over 10 min reaction time. The complete conversion of NO₂⁻ to NO₃⁻ by O₃ was previously revealed in a few studies.^{22,26} By the result from Fig. 3, it can be assumed that NO₂⁻ was degraded by O₃, such as Eq. 5.

$$NO_2^- + O_3 \rightarrow NO_3^- + O_2 \tag{5}$$

 O_3 gas in the reactor was constantly provided during the reaction period where the dissolved O_3 concentration was calculated to be 4.10×10^{-5} M. Therefore, $k_{2,1}$ in Eq. 4 was determined as $6.8\times10^3~M^{-1}~min^{-1}$ based on the dissolved concentration.

As shown in Fig. 3(b), the degradation of NO_2^- in O_3/UV reaction did not produce only NO_3^- but other compounds as well, which was recognized as the concentration gap between NO_2^- and NO_3^- . Some studies reported that NO_3^- can be photo-degraded in the wavelength less than 290 nm, such as Eqs. 6 and 7. ^{16-18,27}

$$NO_3^- + hv(\leq 290nm) \rightarrow NO_3^{-*} \rightarrow NO_2^- + O({}^3P) \tag{6}$$

$$NO_{3}^{-} + hv(\leq 290 \, nm)(H^{+}) \rightarrow NO_{3}^{-*} \rightarrow NO_{2}^{+} + OH^{\bullet}$$

$$\tag{7}$$

This shows that NO₂ radical and NO₂⁻ can also be generated by the photolysis of NO₃⁻ in the O₃/UV process. However, the regeneration of NO₂⁻ in O₃/UV was not attained in this reaction, which was implicated by similar NO₂⁻ degradation rate constants between O₃-only and O₃/ UV reactions (Table 1). Therefore, the difference between NO₂⁻ and NO₃⁻ in Fig. 3(b) ($|NO_2^--NO_3^-|$) can be represented as NO₂ radical (NO₂') as shown in Eq. 7. NO₂ radical is a very strong one-electron oxidant in aqueous solution²⁸,

Figure 3. Transformation from NO₂⁻ to NO₃⁻ and others in (a) O₃only and (b) O₃/UV reactions ([NO₂⁻]₀: 3 mM, pH: 6.5 ± 0.3). * $|NO_2^--NO_3^-| \Rightarrow NO_2$ radical

which plays the role of the OH radical scavenger, as shown by Eq. 8.²⁹ In particular, Eq. 8 occurs in the bulk solution in the deionized water.³⁰ It is noted that the photolysis of $NO_3^$ accompanies the generation reaction as well as the sink reaction of OH radical.

$$NO_2^{\bullet} + OH^{\bullet} \xrightarrow{k_{2,-2}} HNO_3 \quad k_{2,-2} = 1.3 \times 10^9 M^{-1} S^{-1}$$
 (8)

Interestingly, the change trends of $[NO_3^-]$ were identical with those of $[NO_2 \text{ radical}]$, implicating that the degradation and generation reactions of NO_3^- in O_3/UV reaction were accomplished with similar rates. Based on the results, the behaviour of NO_2^- in the O_3/UV process can be explained as shown in Eq. 9, where the rates were comprised as Eq. 4, 10, and 11.

$$NO_2^- + O_3 \xrightarrow{k_{2,1}} NO_3^- + hv \underset{k_{2,-2}}{\overset{k_{2,2}}{\leftrightarrow}} NO_2^{\bullet} + OH^{\bullet}$$
 (9)

Figure. 4. (a) Effect of NO_2^- to degrade C_6H_6 in regard to the pseudo-first order kinetic model (b) relationship of [OH'] and $[NO_2^-]$ in the O₃/UV process ($[C_6H_6]_0$: 3mM, pH: 6.5 ± 0.3).

$$\frac{[NO_3^-]}{dt} = -k_{2,2}[NO_3^-][hv] + k_{2,-2}[NO_2^-][OH^-] + k_{2,1}[NO_2^-][O_3]$$
$$= -k_2[NO_3^-] + k_{-2}[NO_2^-] + k_1[NO_2^-]$$
(10)

$$\frac{[NO_{2}^{'}]}{dt} = -k_{2,-2}[OH^{'}][NO_{2}^{'}] + k_{2,2}[NO_{3}^{-}][hv]$$
$$= k_{-2}[NO_{2}^{'}] + k_{2}[NO_{3}^{-}]$$
(11)

where $k_{2,1}$, $k_{2,2}$, and $k_{2,2}$ [M^{-1} min⁻¹] are the second-order rate constants for each reaction in Eq. 9, respectively. Also, k_1 , k_2 , and k_{-2} [min⁻¹] are the pseudo-first order rate constants corresponding to $k_{2,1}$, $k_{2,2}$, and $k_{2,-2}$, respectively.

Determination of OH Radical in O₃/UV Process. As shown in Eq. 7 and 8, the chain reactions of NO_2^- and NO_3^- in the O₃/UV process play both roles to source and sink the OH radical. Therefore, the behaviour of the OH radical should be ascertained for estimating the fate of NO_2^- in the process.

Hyun-Seok Son et al.

 C_6H_6 , which has a great rate constant with OH radical (6 × 10⁹ M⁻¹s⁻¹)³¹, was used as a model compound in order to induce competition reactions for OH radical with NO₂⁻. Fig. 4(a) shows that the degradations of C₆H₆ in O₃/UV process were well conformed to the pseudo-first order rate, as shown by Eq. 12, with R² values of over 0.9745, which increased with the increase of NO₂⁻ addition in solution. Therefore, the concentration of C₆H₆ was the rate determining factor and the concentration of OH radical could be regarded as the constant.

$$\frac{[C_6H_6]}{dt} = -k_{benz}[OH'][C_6H_6] = -k_{exp}[C_6H_6]$$
(12)

where $k_{exp}[min^{-1}]$ was represented as the rate constant observed in the degradation experiment of C_6H_6 , and k_{benz} was $6 \times 10^9 \text{ M}^{-1}\text{S}^{-1}$.

Using Eq. 12 and the known value of k_{benz} , OH radical concentration was calculated. Because the relationship between [OH[•]] and [NO₃⁻] has the linearity as shown in Fig. 4(b), [OH[•]] and k₋₂ (=k_{2,-2}[OH[•]], Eq. 10 and 11) at [NO₂⁻]₀ (3 mM) can be calculated with the regression equation, which are 3.74×10^{-12} M and 2.92×10^{-1} min⁻¹.

Based on the k_{.2} values, the differential equations (Eqs. 4, 10 and 11), and Eq. 13, k₂ value, which should be larger than k_{.2} by the experimental data, is $(3.20 \pm 0.0045) \times 10^{-1} \text{ min}^{-1}$.

$$[NO_{2}^{-}] + [NO_{3}^{-}] + [NO_{2}^{-}] = [NO_{2}^{-}]_{0}$$
(13)

Where $[NO_2^-]_0$ is the initial concentration of NO_2^- . By the calculations, the changes of NO_2^- , NO_3^- , and NO_2 radical in the O₃/UV reaction were modelled to Eqs. 14, 15, and 16 with the function of time, respectively.

$$[NO_{2}^{-}] = [NO_{2}^{-}]_{0}e^{-0.278t}$$
(14)

$$[NO_3^-] = 0.612 \times [NO_2^-]_0 (1 - e^{-0.278t})$$
(15)

$$[NO_{2}^{\bullet}] = 0.671 \times [NO_{2}^{-}]_{0}(1 - e^{-0.278t})$$
(16)

Effect of C_6H_6 in O_3/UV Reaction. As shown in Fig. 5, C_6H_6 completely degraded in 8 min of O_3/UV reaction, when the production portion of $|NO_2^--NO_3^-|$ surpassed that of NO_3^- . Fig. 5 also showed that the accumulation of NO_3^- began after degrading C_6H_6 completely. It is possible that the chain reaction between NO_2^- and NO_3^- should be achieved via the production of other nitrogen species which were represented as $|NO_2^--NO_3^-|$ in this study. In addition, the degradation rate constant of NO_2^- reduced with C_6H_6 during the O_3/UV reaction (Table 2). Because the species of $|NO_2^--NO_3^-|$ were initialized from the degradation of NO_3^- , the transformation rate of NO_2^- to NO_3^- may have nothing to do with the presence of C_6H_6 in solution. This indicates that C_6H_6 induced the competitive reaction to OH radical with NO_2^- .

Some studies say that NO_2^- may be regenerated through the degradation of N_2O_4 which was recombined by NO_2 radical (Eq. 17 and 18).^{30,32}

$$2NO_2^{\bullet} \to N_2O_4 \tag{17}$$

Effect of NO_2^- & $NO_3^-O_3/UV$ *Process*

Table 2. Pseudo-first order rate constants and R^2 values of C_6H_6 and NO_2^- degradation for each stage of O_3/UV with C_6H_6 ([NO_2^-]_0: 3 mM, [C_6H_6]_0: 3 mM, [O_3]: 0.041 mM, pH: 6.5 ± 0.3)

	0-8 min		8-15 min		0-15 min	
	$k_1(min^{-1})$	\mathbb{R}^2	$k_1(min^{-1})$	\mathbb{R}^2	$k_1(min^{-1})$	\mathbb{R}^2
NO_2^-	0.175 ± 0.010	0.988 ± 0.005	0.239 ± 0.005	0.949 ± 0.012	0.166 ± 0.006	0.977 ± 0.009
C_6H_6	0.262 ± 0.005	0.992 ± 0.004	-	-	-	-

Figure 5. Transformation from NO_2^- to NO_3^- and others in the O_3/UV reactions with C_6H_6 ([NO_2^-]₀: 3 mM, pH: 6.5 ± 0.3).

$$N_2O_4 + H_2O \rightarrow HNO_2 + HNO_3 \tag{18}$$

When C_6H_6 and NO_2^- competed in the O_3/UV reaction, the cycle reactions of NO2⁻ may be modified as shown in Fig. 6. Treinin and Hayon³² showed that most of the NO₂ radical was converted to N2O4 at an equilibrium state. However, the rate constant of Eq. 16 $(4.5 \times 10^8 \text{ M}^{-1} \text{s}^{-1})^{30}$ was slower than that of the reaction between NO2 radical and OH radical (1.3 $\times 10^9$ M⁻¹s⁻¹). Since the reaction of NO₂ radical and OH radical was inhibited due to scavenging of the OH radical by C_6H_6 , $|NO_2^--NO_3^-|$ presented in Fig. 5 may exist in the form of N₂O₄ rather than NO₂ radical. Therefore, the regeneration of NO₂⁻ and NO₃⁻ was produced by the hydrolysis of N₂O₄ (Eq.18) during the reaction of C_6H_6 and OH radical, of which the concentration was insignificant as shown in Fig. 6. It implicates that the O₃/UV system may be a removal system of NO₂⁻ and NO₃⁻ in aqueous system due to phase change. According to Fig. 6(b), the rate models of NO₂⁻, NO_3^- , and N_2O_4 were assumed by Eqs. 19, 20, and 21

$$\frac{[NO_2^-]}{dt} = -k_1[NO_2^-] + k_4[N_2O_4]$$
(19)

$$\frac{[NO_3^-]}{dt} = -k_2[NO_3^-] + k_1[NO_2^-] + k_4[N_2O_4]$$
(20)

$$\frac{[N_2O_4]}{dt} = k_2[NO_3^-] - k_4[N_2O_4]$$
(21)

where k_4 [min⁻¹] was the first order rate constant of N₂O₄ abatement in Eq. 17. By solving the differential equations

Figure. 6. Cycle reactions of NO_2^- , NO_3^- , NO_2 radical, and N_2O_4 in O_3/UV reaction (a) with and (b) without C_6H_6 .

(Eqs. 18, 19, 20) and using mass balance equation (Eq. 21), k_4 was calculated as $(0.66 \pm 0.003) \times 10^{-1} \text{ min}^{-1}$ and the models in the O₃/UV reaction with C₆H₆ were made for the changes of [NO₂⁻], [NO₃⁻], and [N₂O₄] (Eqs. 23,24,25).

$$[NO_{2}^{-}] + [NO_{3}^{-}] + [N_{2}O_{4}] = [NO_{2}^{-}]_{0}$$
(22)

$$[NO_{2}^{-}] = [NO_{2}^{-}]_{0}e^{-0.278t}$$
(23)

$$[NO_{3}^{-}] = 0.192[NO_{2}^{-}]_{0}(1 - e^{-0.278t})$$
(24)

$$[N_2O_4] = 0.192[NO_2^-]_0(1 - e^{-0.278t})$$
(25)

Comparing Eq. 14 with Eq. 23, the degradation rate of NO_2^- decreased by the presence of C_6H_6 . This was caused by the regeneration of NO_2^- by the hydrolysis of N_2O_4 , of which the rate was more gentle compared to that of the reduction of NO_3^- , resulting in the accumulation of N_2O_4 (or NO_2 radical) as shown in Fig. 5. As a result, the chain reactions initiated from NO_2^- in O_3/UV significantly changed by the addition of C_6H_6 , depending on the OH radical generated in the reaction.

Conclusion

In this paper, the reversible reaction system of NO_2^- , NO_3^- , and NO_2 radical/ N_2O_4 in the O_3/UV process with rate constants of all reactions involved was shown. It was found that the NO₂ radical in the O₃/UV process quenched the OH radical produced during the degrading reaction of NO₃⁻. This means that the NO₂⁻ or NO₃⁻ was not appropriate for boosting up the generation of OH radical in the O₃/UV process. However, this process became an effective degrading method by introducing C₆H₆, which had high affinity to OH radical, under the presence of NO₂⁻ or NO₃⁻. Furthermore, it is possible that NO₂⁻ or NO₃⁻ in solution is changed to N₂O₄ from liquid phase to gas in open state. Therefore, the competitive reaction of NO₂⁻ (NO₃⁻) and materials affinitive with OH radical in O₃/UV process can be effective method to remove NO₂⁻ and/or NO₃⁻ as well as to mineralize recalcitrant pollutants in aqueous system.

Acknowledgments. This work was supported by Konkuk University in 2009

References

- 1. Son, H. S.; Im, J. K.; Zoh, K. D. Water Research 2009, 43, 1457.
- 2. Canonica, S.; Jans, U.; Stemmler, K.; Hoigne', J. Environ. Sci. Technol. 1995, 29, 1822.
- Kusic, H.; Koprivanvac, N.; Bozic, A. L. Chemical Engineering Journal 2006, 123, 127.
- 4. Chen, S. N.; Hoffman, M. Radiation Research 1793, 56, 40.
- 5. Canonica, S.; Tratnyek, P. G. Environ. Toxicol. Chem. 2003, 22, 1743.
- Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M.; Ajassa, R.; Olariu, R.; Arsene, C. *Envrion. Sci.*, *Technol.* 2006, 40, 3775.
- Huber, M. M.; Canonica, S.; Park, G. Y.; von Gunten, U. *Environ. Sci. Technol.* 2003, *37*, 1016.
- Huber, M. M.; Gbel, A.; Joss, A.; Hermann, N.; Lffler, D.; Mcaardell, C. S.; Ternes, T. A.; Gunten, U. V. *Environ. Sci. Technol.* 2005, *39*, 4290.

- 9. Wert, E. C.; Rosario-Ortiz, F. L.; Snyder, S. A. *Water Research* 2009, 43, 1005.
- Wu, J. J.; Yang, J. S.; Muruganandham, M.; Wu, C.C. Separat. & Purificat. Technol. 2008, 62, 39.
- 11. Staehelln, J.; Holgn, J. Environ. Sci. Technol. 1982, 16, 676.
- 12. Lin, C.; Chao, C.; Liu, M.; Lee, Y. J. Hazard. Mater. 2009, 167, 1014.
- Wert, E.; Rosario-Ortiz, F. L.; Snyder, S. A. *Environ. Sci. Technol.* 2009, 43, 4858.
- Rosehfeldt, E. J.; Linden, K. G.; Canonica, S.; von Gunten, U. Water Research 2006, 40, 3695.
- Wert, E. C.; Rosario-Ortiz, F. L.; Drury, D. D.; Snyder, S.A. Water Research 2007, 41, 1481.
- 16. Latifoglu, A.; Gurol, M. D. Water Research 2003, 37, 1879.
- 17. Garoma, T.; Gurol, M. D. Environ. Sci. Technol. 2005, 39, 7964.
- 18. Zepp, R. G. Environ. Sci. Technol. 1987, 21, 443.
- Brezonik, P. L.; Fulkerson-Brekken, J. Environ. Sci. Technol. 1998, 32, 3004.
- 20. Warneck, P.; Christa, W. J. Phys. Chem. 1998, 92, 6278.
- 21. Carlucci, A. F.; Hartwig, E. O.; Bowes, P. M. Mar. Biol. 1970, 7, 161.
- 22. Zafiriou, O. C.; True, M. B. Mar. Chem. 1979, 8, 9.
- 23. Yang, M.; Uesugi, K.; Myoga, H. Water Research 1999, 33, 1911.
- Da Silva, L. M.; Franco, D. V.; Forti, J. C.; Jardim, W.F.; Boodts, J.F.C. J. Applied Electrochemistry 2006, 36, 523.
- 25. Santana, M. H. P.; Da Silva, L. M.; Freitas, A. C.; Boodts, J. F. C.; Fernandes, K. C.; De Faria, L. A. J. Hazard. Mater. 2009,164, 10.
- 26. Cox, R. A.; Coker, G. B. J. Atmosphere Chemistry 1983, 1, 53.
- 27. Chu, L.; Anastasio, C. J. Phys. Chem. A 2003, 107, 9594.
- 28. Giamalva, D. H.; Kenion, G. B.; Church, D. F.; Pryor, W. A. J. Am. Chem. Soc. 1987, 109, 7059.
- 29. Gonzalez, M. C.; Braun, A. M. J. Photochem. Photobiol. A: Chemistry 1996, 93, 7.
- Mack, J.; Bolton, J. R. J. Photochem. Photobiol. A: Chemistry 1999, 128, 1.
- 31. Haag, W. R.; Hoign, J. Chemosphere 1985, 14, 1659.
- 32. Treinin, A.; Hayon, E. J. Am. Chem. Soc. 1970, 92, 5821.