• Title/Summary/Keyword: radiation application

Search Result 1,457, Processing Time 0.031 seconds

Study on the Chemical and Radiation Crosslinking of Poly(vinyl alcohol) Hydrogels for an Improvement of Heat Resistance (내열특성 개선을 위한 폴리(비닐 알코올) 수화젤의 화학 가교와 방사선 가교에 관한 연구)

  • Park, Kyoung-Ran;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.91-95
    • /
    • 2005
  • The PVA hydrogels were prepared by the chemical and irradiation method to improve the heat resistance of these hydrogels at the high temperature. The physical properties such as the gel content, the degree of swelling and the gel strength for the synthesized hydrogels were examined. Gel content increased as the chemical reaction time and the irradiation dose increased, and gel content of the hydrogels were higher when the two-steps of chemical and irradiation method were used rather than only the chemical method. Gel strength increased as the chemical reaction time increased, and as the irradiation dose decreased. The hydrogels prepared by the chemical reaction for 5 hours and the two-steps had the heat resistance at the high temperature.

Personal Dosimeters Worn by Radiation Workers in Korea: Actual Condition and Consideration of Their Proper Application for Radiation Protection

  • Eunbi Noh;Dalnim Lee;Sunhoo Park;Songwon Seo
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.162-166
    • /
    • 2023
  • Background: Assessment of the radiation doses to which workers are exposed can differ depending on the placement of dosimeters on the body. In addition, it is affected by whether the placement is under or over a shielding apron. This study aimed to evaluate the actual positioning of personal dosimeters on the body, with or without shielding aprons, among radiation workers in Korea. Materials and Methods: We analyzed the survey data, which included demographic characteristics, such as sex, age, occupation, work history, and placement of the personal dosimeter being worn, from a cohort study of Korean radiation workers. We assessed the use of personal dosimeters among workers, stratified by sex, age, working period, starting year of work, and occupation. Results and Discussion: Overall, high compliance (89.1% to 99.0%) with the wearing of dosimeters on the chest was observed regardless of workers' characteristics, such as age, sex, occupation, and work history. However, the placement of dosimeters, either under or over the shielding aprons, was inconsistent. Overall, 40.1% of workers wore dosimeters under their aprons, while the others wore dosimeters over their aprons. This inconsistency indicates that radiation doses are possibly measured differently under the same exposure conditions solely owing to variations in the placement of worn dosimeters. Conclusion: Although a lack of uniformity in dosimeter placement when wearing a shielding apron may not cause serious harm in radiation dose management for workers, the development of detailed guidelines for dosimeter placement may improve the accuracy of dose assessment.

Studies on the effects of radiation from radioisotopes incorporated in plant (IV) -The effects of P-32 application on the growth of buckwheat- (작물에 흡수된 방사성 동위원소의 내부 조사 효과에 관한 연구 (IV) -교맥 생장에 미치는 P-32 시용의 잔유 효과-)

  • 김길환
    • Journal of Plant Biology
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 1968
  • Buckwheat seeds produced in previous year (1965) in an experimental pot culture in which nine levels of P-32 ranging from $1.4{\times}10-4 to 3.3{\times}104$\mu$c/pot(as of 27 July 1965)$, with the same specific activity, had been applied to the corresponding pots respectively, were used this year(1996) in water and soil culture as well as in germination test to investigate the feature and extent of possible residual effects of P-32 incorporated upon germination and plant growth, and the following results were obtained: 1. Under the given experimental conditions both stimulative and inhibitory effects of radiation were observed. 2. The germination rate of the seeds was lower at the higher level of P-32 aplication ranging from $3.0{\times}103 to 3.3{\times}104$\mu$c/pot$ and higher at 0.2 $\mu$c P/pot than the control. 3. Among the seeds produced at the higher level of application about 80% was failed to germinate, owing to the radiation injury. The remaining 80% was failed to germinate, owing to the radiation injury. The remaining 80% survived the damaging effect and showed vigorous growth and increased yield. The latter group of seeds thus proved themselves to be more radioresistant than the former. 4. The survived seeds produced later more straw and root on dry weight basis. The higher the level of P-32 applied, the stronger the stimulative effect showed in vegetative growth. 5. No radiation effect on linear growth of the plants was observed in the soil culture. 6. The dry weight of straw produced showed little difference at the moderate range compared with that of control in the soil culture. At high level of application, i.e. over $\mu$c P32/pot, however, the production was increased by 12-37% of control. 7. As for the dry weight of root harvested, the P-32 treatment over 24$\mu$c P32/pot produced 82-155% more than the control, whereas little difference was observed under 2.2$\mu$c P32/pot. 8. The seed production increased in general by the P-32 treatments. Particularly at the moderate level of application the rate of increase amounted to 70% of the control. 9. Those individual plants which survived damaging effects of radiation at the germinating stage shwoed remarkable stimulative effects both in vegetative and in reproductive stage of growth.

  • PDF

Comparison of Linear Accelerator and Helical Tomotherapy Plans for Glioblastoma Multiforme Patients

  • Koca, Timur;Basaran, Hamit;Sezen, Duygu;Karaca, Sibel;Ors, Yasemin;Arslan, Deniz;Aydin, Aysen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7811-7816
    • /
    • 2014
  • Background: Despite advances in radiotherapy, overall survival of glioblastoma multiforme (GBM) patients is still poor. Moreover dosimetrical analyses with these newer treatment methods are insufficient. The current study is aimed to compare intensity modulated radiation therapy (IMRT) linear accelerator (linac) and helical tomotherapy (HT) treatment plans for patients with prognostic aggressive brain tumors. Material and Methods: A total of 20 GBM patient plans were prospectively evaluated in both linac and HT planning systems. Plans are compared with respect to homogenity index, conformity index and organs at risk (OAR) sparing effects of the treatments. Results: Both treatment plans provided good results that can be applied to GBM patients but it was concluded that if the critical organs with relatively lower dose constraints are closer to the target region, HT for radiotherapeutical application could be preferred. Conclusion: Tomotherapy plans were superior to linear accelerator plans from the aspect of OAR sparing with slightly broader low dose ranges over the healthy tissues. In case a clinic has both of these IMRT systems, employment of HT is recommended based on the observed results and future re-irradiation strategies must be considered.

Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy (첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰)

  • Choi, Sang Gyu
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

Dynamics of charged particles around a compact star with strong radiation

  • Oh, Jae-Sok;Kim, Hong-Su;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2011
  • It is the conventional wisdom that the Poynting-Robertson effect is essentially the outcome of the interplay between absorption and reemission processes. For a better understanding of the motion of charged particles around a compact star with strong radiation, we reached an alternative interpretation for the Poynting-Robertson effect based on the covariant formalism and found that it is attributed to the combination of the aberration and the Lorentz transformation of the radiation stress-energy tensor. As a general relativistic application of the Poynting-Robertson effect, we studied the dynamics of test particles around the spinning relativistic star with strong radiation. We discovered that the combination of the angular momentum and the finite size of the star generates "radiation counter drag" which exerts on the test particle to enhance its specific angular momentum, contrary to the radiation drag. The balance of the radiation drag and the radiation counter drag renders the particle to hover around the spinning luminous star at the "suspension orbit". The radial position and the angular velocity of the particle on the "suspension orbit" are determined by the angular momentum, the luminosity, and the size of the central star only, and they are independent of the initial position and velocity of the particle.

  • PDF

Characterization of Electron Beam Cured Epoxy Acrylate (에폭시 아크릴레이트의 전자선 영향 평가)

  • Shin, Jin-Wook;Oh, Byung-Hwan;Ko, Keum-Jin;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.271-276
    • /
    • 2010
  • Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM).

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim;Byeong Ryong Park;Minsu Cho;Won Il Jang;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.270-277
    • /
    • 2023
  • Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

Patient radiation dose and protection from cone-beam computed tomography

  • Li, Gang
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • After over one decade development, cone beam computed tomography (CBCT) has been widely accepted for clinical application in almost every field of dentistry. Meanwhile, the radiation dose of CBCT to patient has also caused broad concern. According to the literature, the effective radiation doses of CBCTs in nowadays market fall into a considerably wide range that is from $19{\mu}Sv$ to $1073{\mu}Sv$ and closely related to the imaging detector, field of view, and voxel sizes used for scanning. To deeply understand the potential risk from CBCT, this report also reviewed the effective doses from literatures on intra-oral radiograph, panoramic radiograph, lateral and posteroanterior cephalometric radiograph, multi-slice CT, and so on. The protection effect of thyroid collar and leaded glasses were also reviewed.

Distribution and Variation Characteristic of Solar Radiation Resources in Korea (국내 태양복사 분포 및 변화특성)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.200.1-200.1
    • /
    • 2010
  • Solar energy is one of the most promising energy resources in the future. For the application and dissemination of solar energy technologies in various fields, reliable data sets of solar irradiation are needed for engineers, researchers, businessmen, and policy makers. Global horizontal solar radiation is needed for the use of flat plate collector, solar domestic hot water system, photovoltaic devices and passive systems like green house. In many countries, solar radiation data accumulated for more then 40 or 50 years and typical weather data are published with average of more then 30 years. In Korea, those global total radiations are measured for about 30 years. With the connections of computer network, measured data could be transmitted to the central control system at key station through Ethernet lines. The data acquisition systems are connected to be automatically controlled by the monitoring network. Global horizontal solar radiation data 16 locations were measured and averaged from 1982 to 2008.

  • PDF