• Title/Summary/Keyword: radial distribution

Search Result 854, Processing Time 0.022 seconds

Korean-Japanese Planet Search Program: Search for Planets around G-type Giants

  • Omiya, Masashi;Han, In-Woo;Izumiura, Hideyuki;Lee, Byeong-Cheol;Sato, Bun'ei;Kim, Kang-Min;Yoon, Tae-Seog;Kambe, Eiji;Yoshida, Michitoshi;Masuda, Seiji;Toyota, Eri;Urakawa, Seitaro;Takada-Hidai, Masahide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • Korean-Japanese Planet Search Program has been carried out since 2005 to search for planets around intermediate-mass giant stars (1.5-5.0 solar masses) by an international collaboration between Korean and Japanese researchers. In this program, we have been carrying out a precise radial velocity survey of about 190 G-type giant stars (6.21.9 solar masses) giant stars. These results extend the planet mass distribution of massive intermediate-mass stars to higher and lower mass region, and may further constrain substellar system formation mechanisms. We report the recent results and current status of Korean-Japanese Planet Search Program.

  • PDF

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up

  • Maruzewski, Pierre;Hasmatuchi, Vlad;Mombelli, Henri-Pascal;Burggraeve, Danny;Iosfin, Jacob;Finnegan, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

Transient heat conduction in rock mass around arch shape cold storage cavern and estimation of in-situ thermal properties (아치형 냉동저장공동 주위암반의 비정상상태 열전도 특성 및 열물성 평가)

  • Synn, Joong-Ho;Park, Yeon-Jun;Kim, Ho-Yeong;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • The characteristics of heat conduction for the heat source boundary like an arch shape cavern are different from those for the semi-infinite or circular boundary which can be driven theoretically. A new form of transient heat conduction equation in rock mass around the arch shape cavern is evaluated with analyzing the pattern of the rock temperature distribution measured at the cold storage pilot plant. The new equation, which is driven by adopting a shape function, $SF=\sqrt{logx_0/log(x_0+x)}$ to the solution for a semi-infinite boundary, has the semi-radial form of temperature variation with distance. And, thermal properties of rock mass are estimated by comparing the rock temperature distributions by this equation with those by measurement. Thermal conductivity and specific heat of rock mass are estimated as giving the difference of 20~25% compared to those of laboratory scale. This difference seems to be caused by discontinuity like joint and water content in rock mass.

  • PDF

Combustion Test and Performance Analysis of Fuel Rich Gas Generator (농후 연소 가스발생기의 연소실험과 성능해석)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.92-97
    • /
    • 2005
  • A series of combustion test was done to verify the optimization result of a gas generator for a 10 ton thrust liquid rocket engine. An injector element is F-O-F impinging type injector and the test was conducted with kerosene/LOX propellants. Test results of combustion temperature and pressure show a very good agreement with optimal design result and verify that the design method was properly established. And turbulence ring revealed its effectiveness in enhancing combustion gas mixing and temperature difference in the radial direction showed only less than 15K. Also turbulence ring induced only 3.2% pressure loss in the combustion chamber, which is far less than conventional level observed in a gas turbine engine. Axial temperature distribution also shows that turbulence ring could effectively reduce about 10% or more in gas generator length if its location is properly selected.

Segmented Ulnar Transposition to Defect of Ipsilateral Radius in the Forearm (전완골 분절의 전위 이식술)

  • Chung, Duke-Whan;Han, Soo-Hong;Lee, Jae-Hoon;Kwon, Boo-Kyung
    • Archives of Reconstructive Microsurgery
    • /
    • v.16 no.2
    • /
    • pp.125-132
    • /
    • 2007
  • Introduction: Ulna is nearly equal to radius in function and bony architecture and strength in forearm. But in lower extremity, fibula is 1/5 of tibia in anatomic and functional point so we can find fibula transposition is commonly used in defect of tibia. We cannot find other article about segmental forearm bone transposition in man. The purpose of this study was to report our clinical and functional result of undergoing segmented transposition of ipsilateral ulna with its own vascular supply in defect of radius in 6 cases. Material and method: From June 1994 to October 2007, 7 segmented bone transpositional grafts in forearm were performed in Kyung Hee Medical Center. The distribution of age was from 20 years old to 73 years old. There was male in 6 cases and female in 1 case. The causes of operation were giant cell tumor in 1 case and traumatic origin in 6 cases; it was nonunion in 2 cases and fracture with severe comminution in 4 cases. Ipsilaterally segmented ulna keeping its own vascular supply was transported to defect of radius in severe traumatic patients and one patient whose tumor in radius had been excised. Transported ulna was fixed to proximal and distal radius remnants by plate and screw. In one case with giant cell tumor, transported ulna was connected to radius across wrist joint as wrist joint fusion. Joint preserving procedures were performed in 6 cases with crushing injury of radius. Results: We could obtain solid bony union in all cases and good functional results. The disadvantage was relative shortening of forearm, but we could overcome this problem. Conclusion: We think that ipsilateral segmented ulna transposition keeping its own vascular supply to radius can be perfomed with one of procedures in cases with wide defect in radius.

  • PDF