• Title/Summary/Keyword: radial distribution

Search Result 854, Processing Time 0.024 seconds

An Experimental Study on the Drop Size and the Combustion Characteristics around the Bluff-body (보염기 주위의 연료액적크기와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The bluff-body is used fur the purpose of increasing the combustion efficiency by stabilizing the flame. Diameters of the bluff-body in this experiment are 6, 8, and 10mm and the impingement angles are $30^{\circ},\;60^{\circ}\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. The SMD was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was larger than 5.2, the NOx concentration was decreased, and an increase in the diameter of the bluff-body decreased the NOx of emission.

  • PDF

NONTHERMAL BROADENING OF UV LINES OBSERVED AT THE LIMB OF THE QUIET SUN

  • LEE HVUNSOOK;YUN HONG SIK;CHAE JONGCHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.57-73
    • /
    • 2000
  • We have done a spectroscopic study of the solar transition region using high resolution UV & EUV data obtained by SUMER(Solar Ultraviolet Measurements of Emitted Radiation) on board SOHO(Solar and Heliospheric Observatory). Optically thin and conspicuous emission lines observed at the solar limb are carefully selected to acquire average values of physical parameters for the quiet region as a function of radial distance. Our main results found from the present study can be summarized as follows. 1) Nonthermal velocities estimated from various UV lines do not decrease with height at least within one total line intensity scale height above the limb. 2) Nonthermal velocity distribution with temperature is very similar to that of the disk center, in the sense that its peak is located around $2{\times}10^5 K$, but the value is systematically larger than that of the disk. 3) It is found that nonthermal velocity is inversely proportional. to quadratic root of electron density up to about 10 arc seconds above the limb, i.e. ${\xi}\~N_e^{-1/4}$, implying that the observed nonthermal broadening can be attributed to Alfven waves passing through the medium. 41 Electron density estimated from the O V 629/760 line ratio is found to range from about $1{\times}10^{10}cm^{-3}$ to $2{\times} 10^{12}cm^{-3}$ in the transition region.

  • PDF

Optical and Near-Infrared Color Distributions of the NGC 4874 Globular Cluster System

  • Cho, Hye-Jeon;Blakeslee, John P.;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2012
  • We examine both optical and optical/near-infrared (NIR) color distributions of the globular cluster (GC) system in the core of the Coma cluster of galaxies (Abell 1656), centered on the giant elliptical galaxy NGC 4874, to study how non-linearities in the color-metallicity relations of GC systems in large elliptical galaxies are linked to bimodal optical color distributions. Since optical-NIR color distributions of extragalactic GC systems reflect the underlying features of the metallicity distributions, we also present the color-color relation for this GC system. In order to do this, we combine F160W ($H_{160}$) NIR imaging data acquired with the Wide Field Camera 3 IR Channel (WFC3/IR), newly installed on Hubble Space Telescope (HST), with F475W ($g_{475}$) and FF814W ($I_{814}$) optical imaging data from the HST Advanced Camera for Surveys (ACS). To quantitatively explain the feature of color distributions, we use the Gaussian Mixture Modeling (GMM) code. Finally, we show the radial distribution of the GCs in the field of NGC 4874.

  • PDF

A planetary companion around K-giant ${\varepsilon}$ Corona Borealis

  • Lee, Byeong-Cheol;Han, In-Woo;Park, Myeong-Gu;Mkrtichian, David E.;Kim, Kang-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.77.1-77.1
    • /
    • 2012
  • We present high-resolution radial velocity measurements of K2 giant ${\varepsilon}$ CrB from February 2005 to January 2012 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph at Bohyunsan Optical Astronomy Observatory. We find that the RV measurements for ${\varepsilon}$ CrB exhibit a periodic variation of 418 days with a semi-amplitude of 129 m/s. There is no correlation with RV measurements and inhomogeneous surface features by examining chromospheric activity indicator (Ca II H region), the Hipparcos photometry, and bisector velocity span. Thus, Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion. Assuming a possible stellar mass of 1.7 $M_{\odot}$, for ${\varepsilon}$ CrB, we obtain a minimum mass for the planetary companion of 6.7 $M_{Jup}$ with an orbital semi-major axis of 1.3 AU, and an eccentricity of 0.11. We support that more massive stars harbor more massive planetary companions in giant hosting planetary companions (Dollinger et al. 2009), as well as, we discuss the frequency of detected planetary companions with the metallicity distribution in giant (Pasquini et al. 2007; Quirrenbach et al. 2011).

  • PDF

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

Experimental Study on Flows within a Shrouded Centrifugal Impeller Passage -at the Shockless Condition- (밀폐형 원심회전차의 내부유동장에 관한 실험적 연구-무충돌 유입 조건에서-)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3262-3271
    • /
    • 1996
  • Flow patterns were measured in a shrouded centrifugal impeller. The flow rate in measurements was fixed at the value corresponding to a nearly zero incidence at the blade inlet. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes from the inlet to the outlet of impeller rotating at 700 rpm, and the static pressure distribution along flow passage and the slip factor at impeller outlet were calculated from the measured values. From these measured data, the primary and secondary flows, the wake production and the static pressure rise in the impeller passage were investigated. Furthermore, the secondary flow patterns and the wake's location in this impeller passage were compared with those of the unshrouded impeller.

Finite Element Analysis of the Effect of Centering Groove on Tip Test (센터링 홈이 팁 시험법에 미치는 영향에 대한 유한요소해석)

  • Kang, Seong-Hoon;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1340-1347
    • /
    • 2002
  • Finite element simulations are being widely used to increase the efficiency and effectiveness of design of bulk metal forming processes. In such simulations, proper consideration of friction condition is crucial in obtaining reliable results. For this purpose, tip test based on backward extrusion was proposed recently. In this lest, a cylindrical billet is positioned in a shallow groove of a counter punch for centering purpose and formation of a radial tip is induced on the extruded end of the workpiece. In this study, the effect of centering groove on tip test was investigated. The quantitative ratio of the shear friction factors between the punch and die was numerically determined depending on the shape of centering groove. Also, surface expansion and pressure distribution along the punch and die were considered in order to better understand the reason that friction condition at the punch compared to the one of die was more severe.

Analysis of Contact Pressure for a 300mm Wafer Polishing Table with Air-Bag Head (Air-Bag Head 가압식 300mm 웨이퍼 폴리싱 테이블의 가압 분포 해석)

  • Ro, Seung-Kook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper, the contact pressure of the wafer and polishing pad for final polishing process for 300 mm-wafer were investigated through numerical analysis using FEM tool, ANSYS. The distribution of the contact pressure is one of main parameters which affects on the flatness and surface roughness of polished wafers. Two types of polishing head, a hard type head with ceramic disk and a soft type head with air bag were considered. The effects of the deformation and initial shape of table on the contact pressure were also examined. Both heads and tables were modeled as 3D finite element model from solid model, and the material properties of polishing pads and rubber plate for the air-bag head were obtained from tensile tests. The contact pressure deviation on wafer surface was smaller with air bag head than hard type head even when the table had form errors such as convex or concave. From this 3D analysis, it could be concluded that the air-bag head has better uniformity of the contact pressure on wafer. Also, the effects of inner diameter of air bag and radial clearance between wafer and retainer were investigated as view point of contact pressure concentration on the edge of wafer.

Effects of Flow Diretion and Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Two-Phase Flow(I) - In Case of Upward Flow - (수직이상유에서 유동방향과 동심원관 간극이 유동양식과 보이드분포에 미치는 영향 (I))

  • 손병진;김인석;김문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.856-866
    • /
    • 1987
  • In the present paper a statistical method using probability density function has been applied to investigate experimentally the flow patterns and fluctuations of time-averaged local void fraction in air-water two-phase mixtures which flow vertically upwards in concentric annuli. This study was carried out using three vertical concentric annuli. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel inner rod. The rod diameter is either 12mm, 16mm or 20mm. The two-phase flow patterns observed in the experiment were bubbly, slug, annular and each transition patterns. It was first demonstrated that the variance, coefficients of skewness and kurtosis calculated from probability density function on time-averaged local void fraction can be used to identify the flow patterns in the annular passage, and the fluctuation of time-averaged local void fraction varies with the radial position in annular gap and the flow pattern.

Phase Doppler Measurements and Probability Density Functions in Liquid Fuel Spray (연료분무의 위상도플러 측정과 확률밀도함수의 도출)

  • 구자예
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1039-1049
    • /
    • 1994
  • The intermitternt and transient fuel spray have been investigated from the simultaneous measurement of droplet sizes and velocities by using Phase/Doppler Particle Analyzer(PDPA). Measurement have been done on the spray axis and at the edge of the spray near nozzle at various gas-to-liquid density ratios(.rho./sub g//.rho./sub l/) that ranges from those found in free atmospheric jets to conditions typical of diesel engines. Probability density distributions of the droplet size and velocity were obtained from raw data and mathematical probability density functions which can fit the experimental distribations were extracted using the principle of maximum likelihood. In the near nozzle region on the spray axis, droplet sizes ranged from the lower limit of the measurement system to the order of nozzle diameter for all (.rho./sub g/ /.rho./sub l/) and droplet sizes tended to be small on the spray edge. At the edge of spray, average droplet velocity peaked during needle opening and needle closing. The rms intensity is greatly incresed as the radial distance from the nozzle is increased. The probability density function which can best fit the physical breakage process such as breakup of fuel drops is exponecially decreasing log-hypebolic function with 4 parameters.