• Title/Summary/Keyword: radial basis function(RBF)

Search Result 245, Processing Time 0.024 seconds

퍼지-신경망을 이용한 시간지연 공정 시스템에 대한 적응제어 기법

  • 최중락;곽동훈;이동익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.994-998
    • /
    • 1996
  • We propose an approach to integrating fuzzy logic control with RBF(Radial Basis Function) networks and show how the integrated network can be applied to multivariable self-organizing and self-learning fuzzy controller. Using the hybrid learning algorithm. To investigate its usefulness and performance, this controller is applied to a time-delayed process system. Simulation results show good control performance and fast convergency in hybrid loaming method.

  • PDF

A Study on Hybrid Structure of Semi-Continuous HMM and RBF for Speaker Independent Speech Recognition (화자 독립 음성 인식을 위한 반연속 HMM과 RBF의 혼합 구조에 관한 연구)

  • 문연주;전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.94-99
    • /
    • 1999
  • It is the hybrid structure of HMM and neural network(NN) that shows high recognition rate in speech recognition algorithms. And it is a method which has majorities of statistical model and neural network model respectively. In this study, we propose a new style of the hybrid structure of semi-continuous HMM(SCHMM) and radial basis function(RBF), which re-estimates weighting coefficients probability affecting observation probability after Baum-Welch estimation. The proposed method takes account of the similarity of basis Auction of RBF's hidden layer and SCHMM's probability density functions so as to discriminate speech signals sensibly through the learned and estimated weighting coefficients of RBF. As simulation results show that the recognition rates of the hybrid structure SCHMM/RBF are higher than those of SCHMM in unlearned speakers' recognition experiment, the proposed method has been proved to be one which has more sensible property in recognition than SCHMM.

  • PDF

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

RBF-POD reduced-order modeling of DNA molecules under stretching and bending

  • Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.395-409
    • /
    • 2013
  • Molecular dynamics (MD) systems are highly nonlinear and nonlocal, and the conventional model order reduction methods are ineffective for MD systems. The RBF-POD method (Lee and Chen, 2013) employed a radial basis function (RBF) approximated potential energies and inter-atomic forces of MD systems under the framework of the proper orthogonal decomposition (POD) method for the reduced-order modeling of MD systems. In this work, we focus on the numerical procedures of the RBF-POD method and demonstrate how to apply this approach to the modeling of ds-DNA molecules under stretching and bending conditions.

Decentralized Control of Robot Manipulator Using the RBF Neural Network (RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어)

  • Won, Seong-Un;Kim, Yeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO (PSO 기반 RBFNN의 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network (RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법)

  • 최수용;고균병;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.452-460
    • /
    • 2003
  • In this paper, an equalizer(RNE) using nonlinear multilayer combining techniques in Bayesian equalizer with a structure of radial basis function network is proposed in order to simplify the structure and enhance the performance of the equalizer(RE) using a radial basis function network. The conventional RE Produces its output using linear combining the outputs of the basis functions in the hidden layer while the proposed RNE produces its output using nonlinear combining the outputs of the basis function in the first hidden layer. The nonlinear combiner is implemented by multilayer perceptrons(MLPs). In addition, as an infinite impulse response structure, the RNE with decision feedback equalizer (RNDFE) is proposed. The proposed equalizer has simpler structure and shows better performance than the conventional RE in terms of bit error probability and mean square error.

An Image Compression Method using Radial-Basis Function Networks (Radial-BAsis Function Networks를 이용한 영상 압축 방법)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.913-919
    • /
    • 2000
  • 본 논문에서는 인간 시지각을 고려한 새로운 영상 압축 방법을 제시한다. 영상의 화소의 값들이 x-y 평명상에서 정의된 3차원 곡면 위에 있는 점들로 가정하여, 영상을 곡면의 복잡도에 따라 나누고, 나누어진 각각의 곡면(영역)은 Radial-Basis Function (RBF)를 사용하여 근사화하는 방법으로 영상을 압축한다. 본 방법은 JPEG 압축 방법과 비슷한 압축율과 영상의 질을 얻을 수 있다.

  • PDF

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Principal Component Analysis (적응적 성분분석 기법에 의한 RBF 신경망의 성능개선)

  • 조용현;윤중환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.475-477
    • /
    • 2000
  • 본 논문에서는 적응적 성분분석 기법을 이용하여 radial basis 함수 신경망의 학습시간과 분류성능을 개선한 새로운 기법을 제안하였다. 제안된 기법에서 적응적 성분분석 기법은 radial basis 함수 신경망의 은닉층 뉴런 개수와 중심값 설정을 위해 이용하였다. 제안된 기법의 radial basis 함수 신경망을 200명의 암환자를 2부류(초기와 악성)로 분류하는 문제에 적용하여 시뮬레이션한 결고, k-평균 군집화 알고리즘을 이용한 radial basis 함수 신경망과 비교할 때 학습시간과 시험 데이터의 분류에서 더욱 우수한 성능이 있음을 확인할 수 있었다.

  • PDF