This paper presents a new method for assessing the three-point-bending (3PB) strength of mortar beams in a non-destructive manner, based on neural network (NN) models. The models are based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for training, in order to boost the prediction accuracy. Data for training the models were collected based on a series of experiments, where the cement mortar beams were subjected to various bending mechanical loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the NN models were then calculated by describing the PSC relaxation process through a generalization of Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN predictions were evaluated using k-fold cross-validation and new data that were kept independent from training; it can be seen that the proposed method can successfully form the basis of a non-destructive tool for assessing the bending strength. A comparison with a different NN architecture confirms the superiority of the proposed approach.
Park, Ho-Sung;Chung, Yoon-Do;Kim, Hyun-Ki;Oh, Sung-Kwun
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.7
/
pp.1320-1326
/
2010
In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.11
/
pp.151-162
/
1994
A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are caused from the local learning mechanism. The structure of the networks is combination of dual networks such as self-organized networks and multilayered local networks. Each local networks learns only data in a sub-region. Large number of memory requirements and low generalization capability for the untrained region, which are drawbacks of conventional local network learning, are overcomed in the proposed networks. The simulation results of the proposed networks show better performance than the standard multilayer neural networks and the Radial Basis function(RBF) networks.
본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis function Neural Network)을 설계하고 이를 n-클래스 패턴 분류 문제에 적용한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉층으로 전달하는 기능을 수행하고 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 패턴분류기의 최적화는 PSO(Particle Swarm Optimization)알고리즘을 통해 이루어진다. 그리고 제안된 패턴분류기는 실제 얼굴인식 시스템으로 응용하여 직접 CCD 카메라로부터 입력받은 데이터를 영상 보정, 얼굴 검출, 특징 추출 등과 같은 처리 과정을 포함하여 서로 다른 등록인물의 n-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석해본다.
본 논문에서는 TYPE-2 퍼지 추론 기반의 RBF 뉴럴 네트워크(TYPE-2 Radial Basis Function Neural Network, T2RBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델의 은닉층은 TYPE-2 가우시안 활성 함수로 구성되며, 출력층은 Interval set 형태의 연결가중치를 갖는다. 여기에서 규칙 전반부 활성함수의 중심 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 Interval set 형태의 연결가중치 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 최적의 모델을 설계하기 위한 학습율 및 활성함수의 활성화 영역 결정에는 입자 군집 최적화(PSO; Particle Swarm Optimization) 알고리즘으로 동조한다. 마지막으로, 제안된 모델의 평가를 위하여 모의 데이터 집합(Synthetic dadaset)을 적용하고 근사화 및 일반화 능력에 대하여 토의한다.
Experiment on a lab-scale pH process is carried out to evaluate the control performance of the neural linearizing control scheme(NLCS) using a radial basis function(RBF) network which was previously proposed by Kim and Park. NLCS was developed to overcome the difficulties of the conventional neural controllers which occur when they are applied to chemical processes. Since NLCS is applicable for the processes which are already controlled by a linear controller and of which the past operating data are enough, we first control the pH process with PI controller. Using the operating data with PI controller, the linear reference model is determined by optimization. Then, a IMC controller replaces the PI controller as a feedback controller. NLCS consists of the IMC controller and a RBF network. After the learning of the neural network is fully achieved, the dynamics of the process combined with the neural network becomes linear and close to that of the linear reference model and the control performance of the linear control improves. During the training, NLCS maintains the stability and the control performance of the closed loop system. Experimental results show that the NLCS performs better than PI controller and IMC for both the servo and the regulator problems.
Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.10
/
pp.1272-1278
/
1999
A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.
Journal of rehabilitation welfare engineering & assistive technology
/
v.9
no.4
/
pp.285-291
/
2015
In this paper, we propose a classification algorithm for postures of sitting person by using IMU(inertial measurement unit). This algorithm uses PCA(principle component analysis) for decreasing the number of feature vectors to three and SVM(support vector machine) with RBF(radial basis function) kernel for classifying posture types. In order to collect the data, we designed neckband-shaped earphones with IMU, and applied it to three subjects who are healthy adults. Subjects were experimented three sitting postures, which are neutral posture, smartphoning, and writing. As the result, our PCA-SVM algorithm showed 95% confidence while the dimension of the feature vectors was reduced to 25%.
SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.10
/
pp.1469-1478
/
2015
In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.