• 제목/요약/키워드: radar target classification

검색결과 56건 처리시간 0.019초

운동학적 특징을 이용한 다기능 레이다 표적 분류 (Target Classification for Multi-Function Radar Using Kinematics Features)

  • 송준호;양은정
    • 한국전자파학회논문지
    • /
    • 제26권4호
    • /
    • pp.404-413
    • /
    • 2015
  • 대공 레이다에서 표적의 분류는 대 탄도탄 모드 수행의 가장 중요한 부분 중 하나이다. 대 탄도탄 모드에서는 항공기와 탄도탄을 분류하여 각 표적에 따른 대응 방법을 결정한다. 표적 분류의 속도와 정확도는 적의 공격에 대한 대응 능력과 직접적인 관련이 있으므로, 효율적이고 정확한 표적 분류 알고리즘이 필수적이다. 일반적으로, 레이다는 표적 분류를 위해 JEM(Jet Engine Modulation) 및 HRR(High Range Resolution), ISAR(Inverse Synthetic Array Radar) 영상 등을 사용하는데, 이러한 기법들은 표적 분류를 위한 별도의(광대역 등) 레이다 파형과 DB(Data Base) 및 분류 알고리즘을 요구한다. 본 논문은 별도의 파형 없이 실제 다기능 레이다에서 적용 가능한 표적 분류 기법을 제안한다. 특징 벡터로 추적 시 얻은 표적의 운동학적인 특징(kinematics features)을 이용하여 레이다 하드웨어 및 시간 관점에서 레이다 자원을 아끼고, 구현이 간단하여 빠르고 상대적으로 정확한 퍼지 논리(fuzzy logic)를 분류 알고리즘으로 사용하여 실제 환경에서의 적용성을 높였다. 항공기의 실측 데이터와 탄도탄의 모의 신호를 사용하여 제안한 분류 알고리즘의 성능과 적합성을 증명하였다.

전투기용 레이다 기반 SAR 영상 자동표적분류 기능 구조 및 CNN 앙상블 모델을 이용한 표적분류 정확도 향상 방안 연구 (Study on the Functional Architecture and Improvement Accuracy for Auto Target Classification on the SAR Image by using CNN Ensemble Model based on the Radar System for the Fighter)

  • 임동주;송세리;박범
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.51-57
    • /
    • 2020
  • The fighter pilot uses radar mounted on the fighter to obtain high-resolution SAR (Synthetic Aperture Radar) images for a specific area of distance, and then the pilot visually classifies targets within the image. However, the target configuration captured in the SAR image is relatively small in size, and distortion of that type occurs depending on the depression angle, making it difficult for pilot to classify the type of target. Also, being present with various types of clutters, there should be errors in target classification and pilots should be even worse if tasks such as navigation and situational awareness are carried out simultaneously. In this paper, the concept of operation and functional structure of radar system for fighter jets were presented to transfer the SAR image target classification task of fighter pilots to radar system, and the method of target classification with high accuracy was studied using the CNN ensemble model to archive higher classification accuracy than single CNN model.

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식 (Radar target recognition using Gaussian mixture model over wide-angular region)

  • 서동규;김경태;김효태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

펄스 도플러 레이더에서 HMM을 이용한 이동표적의 도플러 오디오 신호 식별 (Classification of Doppler Audio Signals for Moving Target Using Hidden Markov Model in Pulse Doppler Radar)

  • 심재훈;이정호;배건성
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.624-629
    • /
    • 2018
  • 감시 및 정찰용 펄스 도플러 레이더(Pulse Doppler Radar : PDR)에서 이동표적의 식별은 일반적으로 레이더 운용자의 도플러 오디오 신호 청취 및 훈련 경험을 바탕으로 수행된다. 본 논문에서는 음성인식 분야에서 널리 이용되는 Mel Frequency Cepstral Coefficients(MFCC) 특징 파라미터와 Hidden Markov Model(HMM) 식별 기법을 이용하여 이동 표적의 클래스를 자동 식별하는 방법을 제안하고, 시뮬레이션을 통해 식별성능을 분석하고 검증하였다.

레이더 표적 구분을 위한 1차원 산란점 추출 기법 알고리즘들의 성능에 관한 비교 연구 (A Study on the Comparision of One-Dimensional Scattering Extraction Algorithms for Radar Target Identification)

  • 정호령;서동규;김경태;김효태
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.193-197
    • /
    • 2003
  • Radar target identification can be achieved by using various radar signatures, such as one-dimensional(1-D) range profile, 2-D radar images, and 1-D or 2-D scattering centers on a target. In this letter, five 1-D scattering center extraction methods are discussed - TLS(Total Least Square)-Prony, Fast Root-MUSIC (Multiple Signal Classification), Matrix-Pencil, GEESE(GEneralized Eigenvalues utilizing Signal-subspace Eigenvalues), TLS-ESPRIT(Total Least Squares - Estimation of Signal Parameters via Rotational Invariance Technique), These methods are compared in the context of estimation accuracy as well as a computational efficiency using a noisy data. Finally these methods are applied to the target classification experiment with the measured data in the POSTECH compact range facility.

  • PDF

레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발 (Radar and Vision Sensor Fusion for Primary Vehicle Detection)

  • 양승한;송봉섭;엄재용
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구 (A Study on Automatic Target Recognition Using SAR Imagery)

  • 박종일;김경태
    • 한국전자파학회논문지
    • /
    • 제22권11호
    • /
    • pp.1063-1069
    • /
    • 2011
  • 레이더 영상이나 광학 영상, 적외선 영상 등을 이용하여 표적을 식별하는 기술을 NCTR(Non-Cooperative Target Recognition) 또는 ATR(Automatic Target Recognition)이라 한다. 그 중에서 SAR(Synthetic Aperture Radar) 영상을 이용하여 자동으로 지상 표적을 식별하는 것을 SAR ATR이라고 한다. 일반적으로 SAR ATR은 탐지, 변별 및 식별 단계로 구성된다. 본 논문에서는 ISAR(Inverse Synthetic Aperture Radar) 영상 식별을 위해 개발된 극사상식별기(polar mapping classifier)를 수정하여 SAR 표적 식별에 이용하였으며, 전처리 과정을 통해 클러터 화소의 영향을 줄이고 표적의 그림자 화소들 표적 식별에 이용하여 식별 성능을 향상시켰다.

바이스태틱 레이다 측정 신호를 이용한 표적 인식에 관한 연구 (A Study on the Target Recognition Using Bistatic Measured Radar Signals)

  • 이성준;이승재;최인식
    • 한국전자파학회논문지
    • /
    • 제23권8호
    • /
    • pp.1002-1009
    • /
    • 2012
  • 본 연구는 미시간 주립대(Michigan State University)의 바이스태틱 레이다 시스템을 통하여 수집한 측정 데이터를 이용한 표적 구분에 관한 연구 결과이다. 본 연구에서는 먼저 F-14, Mig-29, F-22 스케일 모델에 대하여 $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ 바이스태틱 각도에서의 측정을 수행하였다. 측정한 데이터로부터 시간-주파수 영역 해석법인 단시간 퓨리에 변환(Short Time Fourier Transform)과 연속 웨이브릿 변환(Continous Wavelet Transform)을 이용하여 특성 벡터를 추출하고, 신경망 구분기를 통하여 표적 구분 실험을 수행하였다. 실험 결과, 바이스태틱 각도에 따라 표적 구분 성능에 많은 변화가 있으며, 특히, $60^{\circ}$ 바이스태틱 각도에서 가장 좋은 구분 성능을 가짐을 알 수 있었다.

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • 대한원격탐사학회지
    • /
    • 제25권6호
    • /
    • pp.465-474
    • /
    • 2009
  • Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.