• Title/Summary/Keyword: radar signal processing

Search Result 308, Processing Time 0.03 seconds

A Study on Road Detection Based on MRF in SAR Image (SAR 영상에서 MRF 기반 도로 검출에 관한 연구)

  • 김순백;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2001
  • In this paper, an estimation method of hybrid feature was proposed to detect linear feature such as the road network from SAR(synthetics aperture radar) images that include speckle noise. First we considered the mean intensity ratio or the statistical properties of locality neighboring regions to detect linear feature of road. The responses of both methods are combined to detect the entire road network. The purpose of this paper is to extract the segments of road and to mutually connect them according to the identical intensity road from the locally detected fusing images. The algorithm proposed in this paper is to define MRF(markov random field) model of the priori knowledge on the roads and applied it to energy function of interacting density points, and to detect the road networks by optimizing the energy function.

  • PDF

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.

Multifrequency Imaging of Radar Turntable by Phase and Amplitude Measurement (다주파수 신호를 사용한 회전물체의 위상과 진폭측정에 의한 영상)

  • Suh, Kyoung-Whoan;Lee, Kyoung-Soo;Kim, Se-Youn;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.392-397
    • /
    • 1987
  • This paper concerns a method for micro-wave imaging. The image reconstruction of a perfect conducting cylinder by phase and amplitude measurement using the X-Band multifrequency is presented troll the simulated data. The high degree of range resolution is achieved using large signal band-width and cross-range resolution is obtained by doppler processing. The comparison of image reconstruction between range doppler processing and circular convolution algorithm is also shown.

  • PDF

A Modified FSA Technique Using Full-aperture for SAR Spotlight Mode (SAR 집중조사모드를 위해 전 개구면을 사용하는 수정된 FSA 기법)

  • Jung, Young-Kwang;Ra, Won-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.921-932
    • /
    • 2016
  • In this paper, a modified FSA(Frequency Scaling Algorithm) is proposed for KOMPSAT-5 high-resolution SAR image generation. In order to enhance performance of azimuth compression, degraded in sub-aperture processing due to the imperfect geometric parameter of data acquisition, the full-aperture signal processing algorithm is designed based on the exact time-frequency analysis. In addition, an azimuth scaling function is newly devised to make the full-aperture processing algorithm suitable for KOMPSAT-5 sliding-spotlight mode. Different from the previous sub-aperture FSA schemes, the suggested technique could accommodate the merit of unified signal processing structure regardless of operational modes of KOMPSAT-5. Through the point target simulation, it is verified that the suggested algorithm provides superior performance of azimuth compression over the existing full-aperture processing methods. The experimental results using real data acquired by KOMPSAT-5 are also given to demonstrate the effectiveness of our scheme as well.

Effects of Antenna Modeling in 2-D FDTD Simulation of an Ultra-Wide Band Radar for Nondestructive Testing of a Concrete Wall (콘크리트 벽의 비파괴검사를 위한 초광대역 레이더의 2차원 FDTD 시뮬레이션에서 안테나 모델링의 영향)

  • Joo, Jeong-Myeong;Hong, Jin-Young;Shin, Sang-Jin;Kim, Dong-Hyeon;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.98-105
    • /
    • 2013
  • This paper presents a finite-difference time-domain(FDTD) simulation and a data processing technique for radar sensing of the internal structure of a wall using an ultra-wide band antenna. We first designed an ultra-wide band anti-podal vivaldi antenna with a frequency range of 0.3~7 GHz which is chosen to be relatively low after considering the characteristics of wave attenuation, wall penetration, and range resolution. In this study the two-dimensional FDTD technique was used to simulate a wall-penetration-radar experiment under practical conditions. The next, the measured radiation pattern of the practical antenna is considered as an equivalent source in the FDTD simulation, and the reflection data of a concrete wall and targets are obtained by using the simulation. Then, a data processing technique has been applied to the FDTD reflection data to get a radar image for remote sensing of the internal structure of the wall. We compared the two different source excitations in the FDTD simulation; (1) commonly-used isotropic point sources and (2) polynomial curve fitting sources of the measured radiation pattern. As a result, when we apply the measured antenna pattern into the FDTD simulation, we could obtain about 2.5 dB higher signal to noise level than using a plane wave incidence with isotropic sources.

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

GSC-Structured Space-Time Monopulse System (GSC 구조의 시공간 모노펄스 시스템)

  • Kim, Na-Yong;Jeon, Hyeon-Mu;Jung, Young-Seek;Park, Gyu-Churl;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.999-1002
    • /
    • 2017
  • For a target echo containing interference, it is very difficult to improve the performance of a monopulse radar with spatial domain processing, because the statistical property of interference cannot be exclusively obtained. This paper proposes a monopulse system that has a generalized sidelobe canceller(GSC) filter-based time domain processor as a preprocessor prior to conventional monopulse spatial processing. We analytically show the procedure of time-space signal processing running in the system, and assess its performance through simulation. In particular, the performance dependence on the number of taps in the main channel filter and the estimation error in Doppler frequency are assessed by comparison with those of existing systems.

A Study on Signal Processing of Rear Radars for Intelligent Automobile (지능형 차량을 위한 후방 감시용 레이더 신호 처리 기법에 관한 연구)

  • Choi, Gak-Gyu;Han, Seung-Ku;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper introduces a radar signal processing technique for intelligent rear view monitoring of an automobile. The linear frequency modulation-frequency shift keying(LFM-FSK) waveform, which is the combination of frequency modulation continuous wave(FMCW) and frequency shift keying(FSK) waveform, is employed to simultaneously estimate the range, relative aspect angle, and velocity of an automobile. Hence, it can be applied to monitor the rear view of an automobile. FMCW waveform has high range resolution capability, but it produces ghost targets under a multiple target environment. In contrast, FSK waveform can provide high velocity resolution and avoids the problem of ghost targets. However, it fails to identify multiple targets along the radar's line of sight. With LFM-FSK waveform, we can estimate the ranges and velocities of multiple targets with very high resolution, which avoids the ghost target problem of an FMCW waveform. Simulation result shows that LFM-FSK wavefrom is suitable for use in the lane change assistance system for an automobile.

Performance Analysis of DCMP and ZF based on Spatial Channel Response Estimation by ESPRIT (ESPRIT에 의한 공간 채널응답 추정치에 기초를 둔 방향구속 전력 최소화법과 제로포싱 알고리즘의 성능평가)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • It has known that the DCMP(Directionally Constrained Minimization of power)and the ZF(Zero Forcing) can improve the SINR performance of an array antenna system by using spatial signature of wireless channel. This paper analyzes performance of DCMP and ZF in multiple scattering environments. To obtain the spatial signature of wireless channel. bothe DOA(Directional of Arrival) and AS(Angular Spread) of the received signals were estimated by using ESPRIT. The performance of the DCMP and the ZF was analyzed theoretically. Through computer simulation, the SINR performance were evaluated.

  • PDF

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.