• Title/Summary/Keyword: radar signal classification

Search Result 42, Processing Time 0.019 seconds

Adaptive Beamforming System Architecture Based on AOA Estimator (AOA 추정기 기반의 적응 빔형성 시스템 구조)

  • Mun, Ji-Youn;Bae, Young-Chul;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.777-782
    • /
    • 2017
  • The Signal Intelligence (SIGINT) system based on the adaptive beamformer, comprised of the AOA estimator followed by the interference canceller, is a cutting edge technology for collecting various signal information utilizing all sorts of devices such as the radar and satellite. In this paper, we present the efficient adaptive SIGINT structure consisted of an AOA estimator and an adaptive beamformer. For estimating AOA information of various signals, we employ the Multiple Signal Classification (MUSIC) algorithm and for efficiently suppressing high-power interference signals, we employ the Minimum Variance Distortionless Response (MVDR) algorithm. Also, we provide computer simulation examples to verify the performance of the presented adaptive beamformer structure.

Study on Class Separability Measure for Radar Signals (레이다 신호의 클래스 분리도 측정을 위한 연구)

  • Jeong, Seong-Jae;Lee, Seung-Jae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2018
  • In this paper, we propose a novel class separability measure for radar signals. To reduce the sensitivity of the relative aspect angle between a target and radar, to evaluate the discriminatory power of radar signals, the proposed method first calculates the correlation coefficients between two radar cross sections (RCSs) or linearly shifts one-dimensional (1D) radar signals (i.e., high-resolution range profiles (HRRPs)), or rotates two 2D radar signals (i.e., inverse synthetic aperture radar (ISAR) images). Then, it uses the maximum correlation coefficient when two radar signals are best aligned. Next, the proposed method obtains new correlation-based discriminant matrices (CDM) using maximum correlation coefficients. Finally, the cumulative distribution function (CDF) in the CDM and the value corresponding to the specific probability in the CDF are obtained, and this value represents the discriminatory power of the radar signal. Experimental results show that the proposed method can accurately measure the target separability.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

Short-Term Variability Analysis of the Hf-Radar Data and Its Classification Scheme (HF-Radar 관측자료의 단주기 변동성 분석 및 정확도 분류)

  • Choi, Youngjin;Kim, Ho-Kyun;Lee, Dong-Hwan;Song, Kyu-Min;Kim, Dae Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.319-331
    • /
    • 2016
  • This study explores the signal characteristics for different averaging intervals and defines representative verticies for each observatory by criterion of percent rate and variance. The shorter averaging interval shows the higher frequency variation, though the lower percent rate. In the tidal currents, we could hardly find the differences between 60-minute and 20-minute averaging. The newly defined criterion improves reliability of HF-radar data compared with the present reference which deselects the half by percent rate.

Angle-of-Arrival Estimation Algorithm Based on Combined Array Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • The Angle-of-Arrival (AOA) estimation in real time is one of core technologies for the real-time tracking system, such as a radar or a satellite. Although AOA estimation algorithms for various antenna types have been studied, most of them are for the single-shaped array antenna suitable to the specific frequency. In this paper, we propose the cascade AOA estimation algorithm for the combined array antenna with Uniform Rectangular Frame Array (URFA) and Uniform Circular Array (UCA), with the excellent performance for various frequencies. The proposed technique is consisted of Capon for roughly finding AOA groups with multiple signal AOAs and Beamspace Multiple Signal Classification (MUSIC) for estimating the detailed signal AOA in the AOA group, for the combined array antenna. In addition, we provide computer simulation results for verifying the estimation performance of the proposed algorithm.

SAR Image Processing Using SVD-Pseudo Spectrum Technique (SAR에 적용된 SVD-Pseudo Spectrum 기술)

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • This paper presents an SVD(Singular Value Decomposition)-Pseudo Spectrum method for SAR (Synthetic Aperture Radar) imaging. The purpose of this work is to improve resolution and target separability of SAR images. This paper proposes SVD-Pseudo Spectrum method whose advantages are noise robustness, reduction of sidelobes and high resolution of spectral estimation. SVD-Pseudo Spectrum method uses Hankel Matrix of signal components and SVD (Singular Value Decomposition) method. In this paper, it is demonstrated that the SVD-Pseudo Spectrum method shows better performance than the matched filtering method and the conventional super-resolution based multiple signal classification (MUSIC) method in SAR image processing. The targets to be separated are modeled, and this modeled data is used to demonstrate the performance of algorithms.

The study on target recognition method to process real-time in W-band mmWave small radar (밀리미터파대역(W-대역)공대지 레이다의 이중편파 채널을 활용한 지상 표적 식별 기법에 관한 연구)

  • Park, Sungho;Kong, Young-Joo;Ryu, Seong-Hyun;Yoon, Jong-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.61-69
    • /
    • 2018
  • In this paper, we propose a method for recognizing ground target using dual polarization channels in millimeter waveband air-to-surface radar. First, the Push-Broom target detection method is described and the received signal is modeled considering flight-path scenario of air-to-surface radar. The scattering centers were extracted using the RELAX algorithm, which is a time domain spectral estimation technique, and the feature vector of the target was generated. Based on this, a DB for 4 targets is constructed. As a result of the proposed method, it is confirmed that the target classification rates is improved by more than 15% than the single channel using the data of the dual polarization channel.

Detection of Apnea Signal using UWB Radar based on Short-Time-Fourier-Transform (국소 퓨리에 변환 기반 레이더 신호를 활용한 무호흡 검출)

  • Hwang, Chaehwan;Kim, Suyeol;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.151-157
    • /
    • 2019
  • Recently, monitoring respiration of people has been of interest using non-invasive method. Among the vital signals usually used for indicating health status, non-invasive and portable device based monitoring respiratory status is practically useful and enable one to promptly deal with abnormal physical status. This paper proposes the approach to real-time detection of apnea signal based on Short-Time-Fourier-Transform(STFT). Contrary to the analysis of a signal in frequency domain using Fast-Fourier Transform, this paper employs Short-time-Fourier-Transform so that frequency response can be analyzed in short time interval. The respiratory signal is acquired using UWB radar sensor that enables one to obtain respiration signal in contactless way. Detection of respiratory status is carried out by analyzing frequency response, and classification of respiratory status can be provided. In particular, STFT is employed to analyze respiratory signal in real-time, leading to effective analysis of the respiratory status in practice. In the case of existence of noise in the signal, appropriate filtering process is employed as well. The proposed method is straightforward and is workable in practice to analyze the respiratory status of people. To evaluate the proposed method, experimental results are provided.

Detection of Low-RCS Targets in Sea-Clutter using Multi-Function Radar (다기능 레이다를 이용한 저 RCS 해상표적 탐지성능 분석)

  • Lee, Myung-Jun;Kim, Ji-eun;Lee, Sang-Min;Jeon, Hyeon-Mu;Yang, Woo-Yong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.507-517
    • /
    • 2019
  • Multi-function radar(MFR) is a system that uses various functions such as detection, tracking, and classification. To operate the functions in real-time, the detection stage in MFR usually uses radar signals for short measurement time. We can utilize several conventional detectors in the MFR system to detect low radar cross section maritime targets in the sea-clutter; however, the detectors, which have been developed to be effective for radar signals measured for a longer time, may be inappropriate for MFR. In this study, we proposed a modelling technique of sea-clutter short measurement time. We combined the modeled sea-clutter signal with the maritime-target signal, which was obtained by the numerical analysis method. Using this combined model, we exploited four independent detectors and analyzed the detection performances.

Design of FMCW Radar Signal Processor for Human and Objects Classification Based on Respiration Measurement (호흡 기반 사람과 사물 구분 가능한 FMCW 레이다 신호처리 프로세서의 설계)

  • Lee, Yungu;Yun, Hyeongseok;Kim, Suyeon;Heo, Seongwook;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Even though various types of sensors are being used for security applications, radar sensors are being suggested as an alternative due to the privacy issues. Among those radar sensors, PD radar has high-complexity receiver, but, FMCW radar requires fewer resources. However, FMCW has disadvantage from the use of 2D-FFT which increases the complexity, and it is difficult to distinguish people from objects those are stationary. In this paper, we present the design and the implementation results of the radar signal processor (RSP) that can distinguish between people and object by respiration measurement using phase estimation without 2D-FFT. The proposed RSP is designed with Verilog-HDL and is implemented on FPGA device. It was confirmed that the proposed RSP includes 6,425 LUT, 4,243 register, and 12,288 memory bits with 92.1% accuracy for target's breathing status.