• Title/Summary/Keyword: radar signal

Search Result 868, Processing Time 0.022 seconds

Research on Broadband Signal Processing Techniques for the Small Millimeter Wave Tracking Radar (소형 밀리미터파 추적 레이더를 위한 광대역 신호처리 기술 연구)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a small tracking radar requires the development of a small millimeter wave tracking radar having a high range resolution that can acquire and track a target in various environments and disable the target system with a single blow. Small millimeter wave tracking radar with high range resolution needs to implement a signal processor that can process wide bandwidth signals in real time and meet the requirements of small tracking radar. In this paper, we designed a signal processor that can perform the role and function of a signal processor for a small millimeter wave tracking radar. The signal processor for the small millimeter wave tracking radar requires the real-time processing of input signal of OOOMHz center frequency and OOOMHz bandwidth from 8 channels. In order to satisfy the requirements of the signal processor, the signal processor was designed by applying the high-performance FPGA (Field Programmable Gate Array) and ADC (Analog-to-digital converter) for pre-processing operations, such as DDC (Digital Down Converter) and FFT (Fast Fourier Transform). Finally, the signal processor of the small millimeter wave tracking radar was verified via performance test.

Doppler Profile Extraction to Air-Breathing Targets with PT-Waveform Received Signal and Target Tracking Information on a Ground Radar (지상레이다의 PT-파형 수신신호와 항공기 추적정보를 이용한 항공기 도플러 프로파일 추출)

  • Oh, Hyun-Seok;Kim, Soo-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2017
  • This paper has been shown for the extraction of Doppler signature from the radar signal for an air-breathing targets tracked in the ground radar. For the extractions, a Doppler resolution is confirmed from mathematical modeling of PT(pulse train) waveform. Doppler signatures of air-breathing target are varied to radar aspect angle of engine and are determined from physical parameter of jet engine. To confirm such Doppler signatures, the radar signal reflected from the air-breathing target is obtained by our radar signal storage. After this extraction, radar aspect angle of engine has estimated from tracking information. Relative differences of Doppler signatures to radar aspect angle of engine is verified from these results and Doppler profiles for radar target identification appliance are presented.

A Study on Radar Signal Model for Calculation of RCS Using MUSIC Algorithm (레이더 반사단면적 계산을 위한 레이더 신호모델에 관한 연구)

  • Jeong Junng-Sik;Pang Tian-Ting;Jong Jae-Yong;Kim Chul-Seung;Yang Won-Jae;Ahn Young-Sup
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • The detectability of radar depends on RCS(radar cross section). The RCS for complex radar targets may be only approximately calculated by using low-frequency or high-frequency scattering methods, while the RCS for simple radar targets can be exactly obtained by applying on eigen-function method. However, the conventional methods for calculation of RCS are computationally complex. We propose an radar signal model for RCS calculation by MUSIC algorithm In this research, it is assumed that the radar target is considered as a ring of scatterers. The amplitudes of scatterers may be statistically distributed. As the result, the radar signal model is proposed to use MUSIC, and the RCS is calculated by a simple linear algebraic method.

  • PDF

A Helicopter-borne Pulse Doppler Radar Signal Processor Development (헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Jeun, In-Pyung;Choi, Min-Su;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.443-446
    • /
    • 2005
  • This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter

  • PDF

A Performance Enhancement of a Naval Multi-Function Radar Signal Processor (GPU를 이용한 함정용 다기능레이다 신호처리기 성능 개선 연구)

  • Kwon, Se-Woong;Hong, Sung-Min;Ryu, Seong-Hyun;Jung, Chae-Hyun;Sohn, Sung-Hwan;Lee, Ki-Won;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • We studied for GPU based signal processor for naval multi-function radar. We implemented processing software both DSP and GPU, and compared computation performances and power consumption. As a result, computation performance was enhanced from 1.2 to 4.1 times compared with a DSP result. From the results, GPU can alternating DSP based signal processor for common radar processor even though Naval Multi Function Radar.

The analysis of the detection probability of FMCW radar and implementation of signal processing part (차량용 FMCW 레이더의 탐지 성능 분석 및 신호처리부 개발)

  • Kim, Sang-Dong;Hyun, Eu-Gin;Lee, Jong-Hun;Choi, Jun-Hyeok;Park, Jung-Ho;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2628-2635
    • /
    • 2010
  • This paper analyzes the detection probability of FMCW (Frequency Modulated Continuous Wave) radar based on Doppler frequency and analog-digital converter bit and designs and implements signal processing part of FMCW radar. For performance evaluation, the FMCW radar system consists of a transmitted part and a received part and uses AWGN channel. The system model is verified through analysis and simulation. Frequency offset occurs in the received part caused by the mismatching between the received signal and the reference signal. In case of Doppler frequency less than about 38KHz, performance degradation of detection does not occur in FMCW radar with 75cm resolution The analog-digital converter needs at least 6 bit in order not to degrade the detection probability. And, we design and implement digital signal processing part based on DDS chip of digital transmitted signal generator for FMCW radar.

Improvement of Detection Performance of a Ground Radar in the Weather Clutter Using Radar-Received-Signal Analysis (레이다 수신 신호 분석을 이용한 기상 클러터 환경 내 지상 레이다 탐지성능 개선)

  • Oh, Hyun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 2019
  • Radar detection range is decreased with an increase in the noise levels and detection thresholds in adaptive CFAR of a radar signal processor to the weather clutter reflection signal in the rain. When a high-velocity plot is generated in weather clutter, what are detected are not targets but false plots. Detection opportunity is reduced by radar time resource consumption from additional confirmations regarding the false plots. In this paper, the received signals are saved using a radar-received signal storage device. Based on the analysis of the received signals from weather clutter, the influence of the rainfall reflection has been mitigated by front-end attenuation of the signal processor. The improvement in the detection performance is verified through received signal and simulation results.

Removal of Clutter from Doppler Radar Signal to Measure Accurate Muzzle Velocity (도플러 레이더를 이용한 포구속도 계측 시 클러터 제거 방법)

  • Kim, Hyoung-rae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.142-150
    • /
    • 2019
  • Muzzle Velocity is one of the most important measurement items for evaluation of ammunition. The muzzle velocity is defined as the velocity when the projectile leaves the muzzle. Particularly, since the muzzle velocity is closely related to the performance of the propellant, precise measurement of muzzle velocity is required. Doppler radar is used to measure the muzzle velocity, but the quality of Doppler radar signal depends on the test site environment. In this paper, a method to remove the clutter that degrades the signal quality of Doppler radar by improving the structure of the test site and the signal processing method is suggested. For the application of the improved signal processing method, a program for acquiring Doppler radar's raw Doppler data was created. Statistical verification of the velocity data obtained through the improvement of the test site structure and signal processing method proved that the proposed method is effective for the removal of clutter as compared with the existing method.

Design of EMC countermeasures for radar signal processing board (레이다 신호처리 보드의 EMC 대책 설계)

  • Hong-Rak Kim;Man-hee Lee;Youn-Jin Kim;Seong-ho Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.41-46
    • /
    • 2023
  • It is very important to meet the maximum detection range in a radar system. In order to meet the maximum detection Range, the sensitivity of the received signal of the radar system must be high. In addition, the dynamic range should be wide in the radar signal processing board. To meet these requirements, the signal processing board must be designed to be robust against external and internal noise. In particular, a design is required to minimize the effect of noise generated by various switching circuits inside the board on the received radar signal. In this paper, we derive the requirements of the signal processor board to meet the radar system performance and describe the design to meet the derived requirements. In addition, the EMC design to minimize the influence of noise input from the outside or generated from the inside is described. Confirm the secured performance through the test of the manufactured board.

Development of High power Threat Signal Simulator and Interfacing Tracking Radar (고출력 위협신호 모의장치 개발 및 추적레이다 연동)

  • Kwak, Yong-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2022
  • In this study, in order to test the performance of the aircraft system, a threat signal simulator that can transmit a signal similar to the actual threat to the aircraft under test with high power was designed. The high-power threat signal simulator should be able to transmit broadband (UHF band, L band, S band, X band) communication signals and radar signals, and control to transmit signals accurately directed to the aircraft through interfacing tracking radar. The signal strength of the developed equipment is 63 dBm to 93 dBm or more depending on type of signal, and the tracking precision is less than 0.1 degree, which satisfies the required performance. And it was confirmed that the antenna of the high-power threat signal simulator can accurately direct the signal to the aircraft position through the tracking radar interfacing.