• Title/Summary/Keyword: radar rainfall estimation

Search Result 129, Processing Time 0.028 seconds

Accuracy Evaluation of Composite Hybrid Surface Rainfall (HSR) Using KMA Weather Radar Network (기상청 기상레이더 관측망을 이용한 합성 하이브리드 고도면 강우량(HSR)의 정확도 검증)

  • Lyu, Geunsu;Jung, Sung-Hwa;Oh, Young-a;Park, Hong-Mok;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.496-510
    • /
    • 2017
  • This study presents a new nationwide quantitative precipitation estimation (QPE) based on the hybrid surface rainfall (HSR) technique using the weather radar network of Korea Meteorological Administration (KMA). This new nationwide HSR is characterized by the synthesis of reflectivity at the hybrid surface that is not affected by ground clutter, beam blockage, non-meteorological echoes, and bright band. The nationwide HSR is classified into static (STATIC) and dynamic HSR (DYNAMIC) mosaic depending on employing a quality control process, which is based on the fuzzy logic approach for single-polarization radar and the spatial texture technique for dual-polarization radar. The STATIC and DYNAMIC were evaluated by comparing with official and operational radar rainfall mosaic (MOSAIC) of KMA for 10 rainfall events from May to October 2014. The correlation coefficients within the block region of STATIC, DYNAMIC and MOSAIC are 0.52, 0.78, and 0.69, respectively, and their mean relative errors are 34.08, 30.08, and 40.71%.

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method (지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석)

  • Hwang, Seokhwan;Kang, Narae;Yoon, Jung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1053-1064
    • /
    • 2022
  • The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

Applicability of Spatial Interpolation Methods for the Estimation of Rainfall Field (강우장 추정을 위한 공간보간기법의 적용성 평가)

  • Jang, Hongsuk;Kang, Narae;Noh, Huiseong;Lee, Dong Ryul;Choi, Changhyun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.370-379
    • /
    • 2015
  • In recent, the natural disaster like localized heavy rainfall due to the climate change is increasing. Therefore, it is important issue that the precise observation of rainfall and accurate spatial distribution of the rainfall for fast recovery of damaged region. Thus, researches on the use of the radar rainfall data have been performed. But there is a limitation in the estimation of spatial distribution of rainfall using rain gauge. Accordingly, this study uses the Kriging method which is a spatial interpolation method, to measure the rainfall field in Namgang river dam basin. The purpose of this study is to apply KED(Kriging with External Drift) with OK(Ordinary Kriging) and CK(Co-Kriging), generally used in Korea, to estimate rainfall field and compare each method for evaluate the applicability of each method. As a result of the quantitative assessment, the OK method using the raingauge only has 0.978 of correlation coefficient, 0.915 of slope best-fit line, and 0.957 of $R^2$ and shows an excellent result that MAE, RMSE, MSSE, and MRE are the closest to zero. Then KED and CK are in order of their good results. But the quantitative assessment alone has limitations in the evaluation of the methods for the precise estimation of the spatial distribution of rainfall. Thus, it is considered that there is a need to application of more sophisticated methods which can quantify the spatial distribution and this can be used to compare the similarity of rainfall field.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

ESTIMATION RAIN RATE FROM MICROWAVE RADIOMETER

  • Park K. W.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.201-203
    • /
    • 2004
  • We present here, some of the studies carried for estimation of rainfall over land and oceanic regions in and around South Korea. We use active and passive microwave measurements from TRMM - TMI and Precipitation Radar (PR) respectively during a typhoon even named - RUSA that took place during 30 Aug. 2002. We have followed due approach by Yao at. all (2002) and examined the performance of their algorithm using two main predictor variable, named as Scattering Index (SI) and Polarization Corrected Brightness Temperature (PCT) while using TMI data. The rainfall rate estimated using PCT and SI shows some under-estimation as compared to the AWS rainfall products from the PR in common area of overlap. A larger database thus would be used in future. To establish a new rain rate algorithm over Korean region based on the present case study.

  • PDF

Estimation of Z-R Relationships between Radar Reflectivity and Rainfall rate (레이더 반사강도와 강우강도의 Z-R 관계식 산정)

  • Ahn, Sang-Jin;Kim, Jin-Geuk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • The purpose of this study is to estimate Z-R relationships of between radar reflectivity and rainfall rate. The Z-R relationships estimated that rainfall events are selected at Yeongchun water level station where the discharge recorded from 1,000cms to 8,519cms in chungju dam basin. The result of Z-R relationship distributed at thirty two raingage sites, the constant values of A and $\beta$ are distributed between 26.4 and 7.4, 0.9 and 1.56 respectively. The correlation coefficients of standard Z-R relationships(Z=200Rl.6)shows that 0.63 lower than each other raingage sites(0.65~0.748).

Bright band detection using X-band polarimetric radar (X-밴드 이중편파 레이더에 의한 밝은 띠 탐지)

  • Lee, Dong-ryul;Jang, Bong-joo;Hwang, Seok Hwan;Noh, Hui-seong
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1211-1220
    • /
    • 2020
  • This research detects the features of the bright band (BB) through analysis of the vertical profile of range height indicator (RHI) and the slant range beam profile of plane position indicator (PPI) of the polarimetric radar measurements-horizontal reflectivity (ZH), differential reflectivity (ZDR), and cross-correlation coefficient (ρHV). As a result of the analysis, it is possible to clearly detect the bright band using the polarimetric radar measurements, and it is confirmed that the result is consistent by double searching for the BB using the RHI and PPI scan data at the same time. Based on these results, the accuracy of QPE (quantification of precipitation estimation) can be improved by applying the BB search method by the PPI slant range in this research to large rainfall radars that only scan PPI volumes in the field without RHI observations.

Estimation of reflectivity-rainfall relationship parameters and uncertainty assessment for high resolution rainfall information (고해상도 강수정보 생산을 위한 레이더 반사도-강수량 관계식 매개변수 보정 및 불확실성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.321-334
    • /
    • 2021
  • A fixed reflectivity-rainfall relationship approach, such as the Marshall-Palmer relationship, for an entire year and different seasons, can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian inference framework. A calibrated spatially structured pattern in the parameters exists, particularly for the wet season and parameter for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields. In contrast, the radar rainfall fields obtained from the existing Marshall-Palmer relationship show a systematic underestimation. In the event of high impact weather, it is expected that the value of national radar resources can be improved by establishing an active watershed-level hydrological analysis system.