• Title/Summary/Keyword: radar echoes

Search Result 63, Processing Time 0.024 seconds

Altitude Error Analysis of Helicopter-Borne FMCW Radar Altimeter (헬기 탑재 레이다 고도계 신호 수집 및 오차 분석)

  • Jung, Jung-Soo;Lee, Ho-Jun;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.258-261
    • /
    • 2012
  • Helicopter-borne FMCW radar altimeter obtains the altitude information using the beat frequency between the transmitted and reflected signal from the nadir direction. However, the altitude error may exist when the strong echoes are received from the large RCS at the off-nadir direction because of the wide beamwidth of the altimeter antenna. In this paper, in order to investigate the effect of the altitude error due to the large RCS around the off-nadir direction, the reflected signals were measured by using the corner reflectors displaced on the several reference ground positions, and the acquired signals were analyzed and compared in the spectral domain. The analysis results can be used for the improvement of the altitude accuracy in the radar altimeter.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

WiFi(RLAN) and a C-Band Weather Radar Interference

  • Moon, Jongbin;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.216-224
    • /
    • 2017
  • In the terrain of the Korean peninsula, mountainous and flat lands are complexly distributed in small areas. Therefore, local severe weather develops and disappears in a short time due to the influence of the terrain. Particularly in the case of local severe weather with heavy wind that has the greatest influence on aviation meteorology, the scale is very small, and it occurs and disappears in a short time, so it is impossible to predict with fragmentary data alone. So, we use weather radar to detect and predict local severe weather. However, due to the development of wireless communication services and the rapid increase of wireless devices, radio wave jamming and interference problems occur. In this research, we confirmed through the cases that when the radio interference echo which is one of the non-precipitation echoes that occur during the operation of the weather radar is displayed in the image, its form and shape are shown in a long bar shape, and have a strong dBZ. We also found the cause of the interference through the radio tracking process, and solved through the frequency channel negotiation and AP output minimizing. The more wireless devices increase as information communication technology develops in the future, the more emphasized the problem of radio wave interference will be, and we must make the radio interference eliminated through the development of the radio interference cancellation algorithm.

Development of EM Wave Absorber for Millimeter Wave Radar (밀리미터 레이더용 전파흡수체 개발)

  • Choi Chang-Mook;Kim Dong-Il;Je Seung-Hun;Choi Yun-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.223-227
    • /
    • 2006
  • The millimeter-wave radar is positioned as a key, basic ITS technology supporting safe driving, because millimeter wave allows radar to see small distant objects. This system is considered the collision-avoidance radar available in some cars. This system employs poised radar operating within the frequency range $76\sim77GHz$. Radar systems create two major problems(false images and system-to-system interference). False echoes cause driving hazards. These problems can be eliminated through the use of EM wave absorber. Therefore, we designed and fabricated EM wave absorber using permalloy. It has the thickness of 1.4 mm with composition of permalloy:CPE=70:30 wt% and absorption ability higher than 18 dB in the frequency range $76\sim77GHz$.

  • PDF

A Study on the Performance of a Radar Clutter Suppression Algorithm Based on the Adaptive Clutter Prewhitening Filter and Droppler Filter Bank (Adaptive Clutter Prewhitening Filter와 Doppler Filter Bank를 이용한 레이다 Clutter 제거 알고리듬의 성능에 관한 연구)

  • Kim, Yong-Ho;Lee, Hwang-Soo;Un, Chong-Kwan;Lee, Won-Kil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.140-146
    • /
    • 1989
  • In many situations, radar targets are embedded in a clutter environment and clutter rejection is required. The clutter is unwanted radar echoes and may arise owing to reflections from ground and weather disturbances and statistical properties of the clutter vary with range and azimuth as well as time. That is, adaptive signal processing is required. In this paper, a clutter suppression algorithm based on the clutter whitening filter (WF) and doppler filter bank(DFB) is described which provides improved performance compared with conventional nonadaptive clutter suppression algorithm that is the cascaded moving target indicator (MTI) and (DFB). The clutter whitening filter algorithm is based on the Burg's maximum entropy method.

  • PDF

A Study on Estimation of Doppler Frequency in a Current Velocity Measurement Radar (유속 측정 레이다에서의 도플러 주파수 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1551-1557
    • /
    • 2013
  • A current velocity measurement radar estimates Doppler frequencies to extract the corresponding surface velocity information. Therefore, it is required to maintain the high degree of reliability and accuracy of Doppler frequency estimates. However, Doppler spectra of water surface return echoes can have very widely varying shapes according to measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of conventional velocity estimating algorithm in a radar sensor. Therefore, in this paper, a newly suggested algorithm is proposed for improvement using estimation of peak Doppler frequencies. The proposed method shows that the more accurate velocity measurement can be possible comparing with the conventional one.

Optimization Design of Non-Integer Decimation Filter for Compressing Satellite Synthetic Aperture Radar On-board Data (위성 탑재 영상레이다의 온보드 데이터 압축을 위한 비정수배 데시메이션 필터 최적화 설계 기법)

  • Kang, Tae-Woong;Lee, Hyon-Ik;Lee, Young-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.475-481
    • /
    • 2021
  • The on-board processor of satellite Synthetic Aperture Radar(SAR) digitizes the back-scattered echoes and transmits them to the ground. As satellite SAR image of various operating conditions including broadband and high resolution is required, an enormous amount of SAR data is generated. Decimation filter is used for data compression to improve the transmission efficiency of these data. Decimation filter is implemented with the FIR(Finite Impulse Response) filter and here, the decimation ratio and tap length are constrained by resource requirements of FPGA used for implementation. This paper suggests to use a non-integer ratio decimation filter in order to optimize the data transmission efficiency. Also, it proposes a filter design method that remarkably reduces the resource constraints of the FPGA in-use via applying a polyphase filter structure. The required resources for implementing the proposed filter is analysed in this paper.

Partitioning Bimodal Spectrum Peak in Raw Data of UHF Wind Profiler (UHF 윈드프로파일러 원시 자료의 이중 스펙트럼 첨두 분리)

  • Jo, Won-Gi;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • In addition to non-meteorological echoes, meteorological echoes with large scattering effects, such as precipitation, cause errors in wind data measured by wind profiler. In the rainfall situation, the Doppler spectrum of wind profiler shows both the rainfall signal and the atmospheric signal as two peaks. The vertical radial velocity is very large due to the falling rain drop. The radial velocity contaminated by rainfall decreases the accuracy of the horizontal wind vector and leads to inaccurate weather analysis. In this study, we developed an algorithm to process raw data of wind profiler and distinguished rainfall signal and wind signal by partitioning bimodal peak for Doppler spectrum in rainfall environment.

40.8 MHz coherent scatter ionospheric radar observations of E- and F-region field aligned irregularities over Korea

  • Yang, Tae-Yong;Kwak, Young-Sil;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.81.1-81.1
    • /
    • 2011
  • The new coherent scatter ionospheric radar has been operating at Gyerong city ($36.18^{\circ}N$, $127.14^{\circ}E$, dip lat $26.7^{\circ}N$), South Korea. This VHF radar is consisted of 24 Yagi antennas having 5 elements and observes the E- and F-region field-aligned irregularities (FAIs) in a single frequency of 40.8 MHz with a peak power of 24 kW. We present the first results of the E- and F-region FAIs over Korea by using the new VHF coherent scatter ionospheric radar. The morphological and echo characteristics are studied in terms of their echo strength, Doppler velocity and also by spectral width values. From the continuous observations from December 2009, we found ionospheric E- and F-region FAIs appeared frequently. The most interesting and striking observations for E region are occurrence of daytime E-region irregularities and strong Quasi-Periodic (QP) echoes at nighttime. And for F region, strong post-sunset and pre-sunrise FAIs appeared frequently. The VHF radar observations over Korea are discussed in the light of current understanding of mid-latitude E- and F-region FAIs.

  • PDF