• Title/Summary/Keyword: radar application

Search Result 399, Processing Time 0.025 seconds

X Band 7.5 W MMIC Power Amplifier for Radar Application

  • Lee, Kyung-Ai;Chun, Jong-Hoon;Hong, Song-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.139-142
    • /
    • 2008
  • An X-band MMIC power amplifier for radar application is developed using $0.25-{\mu}m$ gate length GaAs pHEMT technology. A bus-bar power combiner at output stage is used to minimize the combiner size and to simplify bias network. The fabricated power amplifier shows 38.75 dBm (7.5 Watt) Psat at 10 GHz. The chip size is $3.5\;mm{\times}3.9\;mm$.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

DCT and DWT based Damaged Weather Radar Image Retrieval (DCT 및 DWT 기반의 손상된 기상레이더 영상 복원 기법)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Won;Noh, Huiseong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.153-162
    • /
    • 2017
  • Today, weather radar is used as a key tool for modern high-tech weather observations and forecasts, along with a wide variety of ground gauges and weather satellites. In this paper, we propose a frequency transform based weather radar image processing technique to improve the weather radar image damaged by beam blocking and clutter removal in order to minimize the uncertainty of the weather radar observation. In the proposed method, DCT based mean energy correction is performed to improve damage caused by beam shielding, and DWT based morphological image processing and high frequency cancellation are performed to improve damage caused by clutter removal. Experimental results show that the application of the proposed method to the damaged original weather radar image improves the quality of weather radar image adaptively to the weather echo feature around the damaged area. In addition, radar QPE calculated from the improved weather radar image was also qualitatively confirmed to be improved by the damage. In the future, we will develop quantitative evaluation scales through continuous research and develop an improved algorithm of the proposed method through numerical comparison.

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Kim, Byoung-Soo;Kim, Kyoung-Jun;Yoon, Jung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.97-100
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 24 mid-sized sub-basins of the Han River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 16 sub-basins are partially covered by the radar leading incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. It is general that smaller sampling error can be expected when the number of clusters increases if the total area coverage remains the same. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

  • PDF

Investigation of Goyang Tornado Outbreak Using X-band Polarimetric Radar: 10 June 2014 (X밴드 이중편파레이더를 활용한 고양 토네이도 발생 사례 분석: 2014년 6월 10일)

  • Jeong, Jong-Hoon;Kim, Yeon-Hee;Oh, Su-Bin;Lim, Eunha;Joo, Sangwon
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 2016
  • On 10 July 2014, tornado outbreak occurred over Goyang province in Korea. This was the first supercell tornado ever reported or documented in Korea. The characteristics of the supercell tornado were investigated using an X-band polarimetric radar, surface meteorological observation, wind profiler, and operational numerical weather prediction (Regional Data Assimilation and Prediction System, RDAPS). The supercell tornado developed along a preexisting dryline that was contributed to surface wind shear. The radar analyses examined here show that the supercell tornado indicated a hook echo with mesocyclone. The decending reflectivity core as well was detected before tornadogenesis and prior to intensification of supercell. The supercell tornado exhibited characteristics similar to typical supercell tornado over the Great Plains of the United States, such as hook echo, bounded weak echo region, and slower movement speed relative to the mean wind. Compared to the typical supercell tornado over U.S., this tornado showed horizontal scale of the mesocyclone was relatively smaller and left-mover.

A Reconfigurable Multiband FMCW Radar for Multipurpose Application (다목적활용을 위한 재구성이 가능한 다중대역 FMCW 레이다)

  • Kim, Byungjoon;Koo, Jong-seop;Kim, Duksoo;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1112-1115
    • /
    • 2015
  • Recently, there have been advancements in radar related material technology, circuit design techniques and architecture design techniques. These have led to developments in radars' performance while decreasing the costs. Many studies have been carried out to apply radars to multipurpose application. In this study, a reconfigurable S-/X- band radar structure for multipurpose application is proposed and implemented. This radar measures a $51.2cm{\times}50.6cm$ target for 10 times from 2 m to 6 m range with 0.25 m distance step. The measured results show that this radar has 26.40 cm maximum range error, 5.63 cm average range error, and 0.24 cm range error variance at S-band while it has 8.53 cm maximum range error, 2.52 cm average range error, and 0.04 cm range error variance at X-band.

Hydrologic Utilization of Radar-Derived Rainfall (I) Optimal Radar Rainfall Estimation (레이더 추정강우의 수문학적 활용 (I): 최적 레이더 강우 추정)

  • Bae Deg-Hyo;Kim Jin-Hoon;Yoon Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1039-1049
    • /
    • 2005
  • The objective of this study is to produce optimal radar-derived rainfall for hydrologic utilization. The ground clutter and beam blockage effects from Mt. Kwanak station (E.L 608m) are removed from radar reflectivities by POD analysis. The reflectivities are used to produce radar rainfall data in the form of rain rates (mm/h) by the application of the Marshall-Palmer reflectivity versus rainfall relationship. However, these radar-derived rainfall are underestimated in temporal and spatial scale compared with observed one, so it is necessary to hire a correction scheme based on the gauge-to-radar (G/R) statistical adjustment technique. The selected watershed for studying the real-time correction of radar-rainfall estimation is the Soyang dam site, which is located approximately 100km east of Kwanak radar station. The results indicate that adjusted radar rainfall with the gauge measurement have reasonal G/R ratio ranged on 0.95-1.32 and less uncertainty with that mean standard deviation of G/R ratio are decreased by $9-28\%$. Mean areal precipitation from adjusted radar rainfall are well agreed to the observed one on the Soyang River watershed. It is concluded that the real-time bias adjustment scheme is useful to estimate accurate basin-based radar rainfall for hydrologic application.

Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator (이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구)

  • Kim, Hae-Lim;Park, Hye-Sook;Park, Hyang Suk;Park, Jong-Seo
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

Three-Dimensional Borehole Radar Modeling (3차원 시추공 레이다 모델링)

  • 예병주
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

A Development of Missile System Test Equipment for Ku-Band Radar Altimeter (Ku대역 전파고도계 체계점검장비 개발)

  • Kim, Taehoon;Jeong, Jinseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.808-815
    • /
    • 2015
  • For performance improving of C-band radar altimeter used in a missile system, Ku-band radar altimeter is developed. To utilize the time delay devices which are used in testing C-band radar altimeter, we proposed C-band and Ku-band frequency conversion method and implemented it as a part of missile system test equipment. In this paper we present design contents, development results and test application results of radar altimeter test equipments.