• Title/Summary/Keyword: radar application

Search Result 399, Processing Time 0.028 seconds

Analysis of capabilities and application characteristic of AIS

  • Shiyuan, Wang;Kaiyu, Xu;Zhijing, Xu;Wenhua, Hu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.223-229
    • /
    • 2006
  • This paper compares and analyzes the capabilities and application characteristic between the shipborne AIS and ARPA Radar. AIS base station and VTS Radar, give a brief introduction of the AIS base station network's building and application in China, and give a discussion on the information fusion and technology integrated of ATS and ARPA Radar, AIS base station network and VTS Radar.

  • PDF

Weather Radar Image Gener ation Method Using Inter polation based on CUDA

  • Yang, Liu;Jang, Bong-Joo;Lim, Sanghun;Kwon, Ki-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.473-482
    • /
    • 2015
  • Doppler weather radar is an important tool for meteorological research. Through several decades of development, Doppler weather radar has enormous progress in understanding, detection and warning of meso and micro scale weather system. It makes a significant contribution to weather forecast and weather disaster warning. But the large amount of data process limits the application of Doppler weather radar. This paper proposed for fast weather radar data processing based on CUDA. CDUA is a powerful platform for highly parallel programming developed by NVIDIA. Through running plenty of threads, radar data can be calculated at same time. In experiment, CUDA parallel program can significantly improve weather data processing time.

Development of a Ground Speed Monitoring System for Aerial Application (항공방제용 지면속도 감시장치의 개발)

  • 구영모;알빈워맥
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-240
    • /
    • 2000
  • A commercially available Doppler radar was modified and evaluated for on-board monitoring of ground speed. The radar output was corrected for pitch angle of aircraft based on the output of an electrolytic tilt sensor. The effects of aircraft speed, height and mounting angle on error in the ground speed were evaluated. The speed error decreased with an increase of the mounting angle since the radar contact angle with respect to the ground approached to the mounting angle. The error increased with an increase of the nominal aircraft speed. The altitude insignificantly affected the speed error. The Doppler radar provided acceptable percent errors within 5% in most measurements. The error can be reduced within ${\pm}$1.5% by increasing the mounting angle ($43^{\circ}$). The error of -3.8% at the mounting angle of $29^{\circ}$could be reduced by adjusting the mounting angle with respect to the radar contact angle.

  • PDF

Effect of Threshold on the Comparison of Radar and Rain Gauge Rain Rate (레이더 강우와 지상강우 비교에 대한 임계값의 영향 평가)

  • Yoon, Jungsoo;Ha, Eunho;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.522-522
    • /
    • 2015
  • In this study, the effect of threshold applied to the radar rain rate on the comparison of the radar and rain gauge rain rate was theoretically examined. The result derived was also evaluated theoretically, using the Bernoulli random field, and empirically, using Mt. Kwanak weather radar data. The results are summarized as follows. (1) In the application to the Bernoulli random field, it was found that the comparison of the radar and rain gauge rain rate with threshold does not introduce any systematic bias. (2) The same results could also be derived in the application to Mt Kwanak weather radar data. In all cases with several radar bin sizes and thresholds considered, the bias was estimated to be far less than 10% of the mean of the rain gauge rain rate. (3) However, in the comparison with threshold applied to both the radar and rain gauge rain rate, the bias was estimated to be higher than 20%. That is, the systematic bias was introduced. This result indicates that the comparison with threshold applied to both the radar and rain gauge rain rate should not be used.

  • PDF

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

A Study on Ecological Interface Design for Navy Ship's Radar Display

  • Park, Young-Hwan;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.353-362
    • /
    • 2012
  • Objective: The aim of this study is developing the navigation radar display of navy ship with ecological interface design (EID) framework. Background: Navy ship radar operator must perform navigation support tasks by monitoring the complex and diverse information presented on the radar display. Current radar display is limited in effective navigation aid and response to an unusual state immediately. It is necessary to develop an effective radar display. Method: Ten navy radar operators performed a series of trials in a low-fidelity radar simulation in which they attempted to solve the problems of current navigation situation. Results: The result demonstrated that the ecological interface's performance was better than the existing radar display on performance time and subjective mental workload. Conclusion: This study expand EID study field to navy ship radar display and confirm ecological display is better than existing radar display in performance time, subjective mental work load. Application: The result of this study may help to improve navy ship navigation radar display currently in use.

A Method to Evaluate the Radar Rainfall Accuracy for Hydrological Application (수문학적 활용을 위한 레이더 강우의 정확도 평가 방법)

  • Bae, Deg-Hyo;Phuong, Tran Ahn;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1039-1052
    • /
    • 2009
  • Radar measurement with high temporal and spatial resolutions can be a valuable source of data, especially in the areas where rain gauge installment is not practical. However, this kind of data brings with it many errors. The objective of this paper is to propose a method to evaluate statistically the quantitative and qualitative accuracy at different radar ranges, temporal intervals and raingage densities and use a bias adjustment technique to improve the quality of radar rainfall for the purpose of hydrological application. The method is tested with the data of 2 storm events collected at Jindo (S band) and Kwanak (C band) radar stations. The obtained results show that the accuracy of radar rainfall estimation increases when time interval rises. Radar data at the shorter range seems to be more accurate than the further one, especially for C-band radar. Using the Monte Carlo simulation experiment, we find out that the sampling error of the bias between radar and gauge rainfall reduces nonlinearly with increasing raingage density. The accuracy can be improved considerably if the real-time bias adjustment is applied, making adjusted radar rainfall to be adequately good to apply for hydrological application.

Generation of radar rainfall data for hydrological and meteorological application (II) : radar rainfall ensemble (수문기상학적 활용을 위한 레이더 강우자료 생산(II) : 레이더 강우앙상블)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A recent increase in extreme weather events and flash floods associated with the enhanced climate variability results in an increase in climate-related disasters. For these reasons, various studies based on a high resolution weather radar system have been carried out. The weather radar can provide estimates of precipitation in real-time over a wide area, while ground-based rain gauges only provides a point estimate in space. Weather radar is thus capable of identifying changes in rainfall structure as it moves through an ungauged basin. However, the advantage of the weather radar rainfall estimates has been limited by a variety of sources of uncertainty in the radar reflectivity process, including systematic and random errors. In this study, we developed an ensemble radar rainfall estimation scheme using the multivariate copula method. The results presented in this study confirmed that the proposed ensemble technique can effectively reproduce the rainfall statistics such as mean, variance and skewness (more importantly the extremes) as well as the spatio-temporal structure of rainfall fields.

Development of Doppler Radar Using Compact Dual-Circularly Polarized Antenna (소형 이중 원형편파 안테나를 이용한 도플러 레이다 개발)

  • Kim, Tae-Hong;Lee, Hyeonjin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.121-124
    • /
    • 2015
  • In this paper, we developed the compact Doppler radar using the compact dual-circularly polarized antenna for medical application. The operating frequency is 2.47 GHz for considering ISM band. In order to decrease the size of the entire system, we designed the compact antenna and located the circuit board at the back of the antenna. The simulation of the proposed antenna was performed by the finite difference time domain (FDTD) method. The total volume of the proposed system is $65{\times}45{\times}6mm^3$ including the antenna. From the experiment, the developed bio-radar could be used to support the device for medical applications.

WAVENUMBER CORRELATION ANALYSIS OF RADAR INTERFEROGRAM

  • Won, Joong-Sun;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.425-428
    • /
    • 1999
  • The radar interferogram represents phase differences between the two synthetic aperture radar observations acquired in slightly different angle. The success of the radar interferometric application largely depends on the quality of the interferogram generated from two or more synthetic aperture radar data sets. We propose here to apply the wavenumber correlation analysis to the in-phase and quadrature phase of the radar interferogram. The wavenumber correlation analysis is to resolve the highly correlated components from the low correlation components by estimating correlation coefficients for each wavenumber component. Through this approach, one can easily distinguish the signal components from the noise components in the wavenumber domain. Therefore, the wavenumber correlation analysis of the radar interferogram can be utilized to design post filter and to estimate the quality of interferogram. We have tested the wavenumber correlation analysis using a Radarsat SAR data pair to demonstrated the effectiveness of

  • PDF