• Title/Summary/Keyword: queue state

Search Result 181, Processing Time 0.023 seconds

Transient diffusion approximation for $M/G/m/N$ queue with state dependent arrival rates

  • Shin, Yang-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.715-733
    • /
    • 1995
  • We present a transient queue size distribution for $M/G/m/N$ queue with state dependent arrival rates, using the diffusion process with piecewise constant diffusion parameters, with state space [0, N] and elementary return boundaries at x = 0 and x = N. The model considered here contains not only many basic model but the practical models such as as two-node cyclic queue, repairmen model and overload control in communication system with finite storage buffer. For the accuracy check, we compare the approximation results with the exact and simulation results.

  • PDF

A Self-Adaptive Agorithm for Optimizing Random Early Detection(RED) Dynamics (라우터 버퍼 관리 기반 체증 제어 방식의 최적화를 위한 자체 적응 알고리즘)

  • Hong, Seok-Won;Yu, Yeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3097-3107
    • /
    • 1999
  • Recently many studies have been done on the Random Early Detection(RED) algorithm as an active queue management and congestion avoidance scheme in the Internet. In this paper we first overview the characteristics of RED and the modified RED algorithms in order to understand the current status of these studies. Then we analyze the RED dynamics by investigating how RED parameters affect router queue behavior. We show the cases when RED fails since it cannot react to queue state changes aggressively due to the deterministic use of its parameters. Based on the RED parameter analysis, we propose a self-adaptive algorithm to cope with this RED weakness. In this algorithm we make two parameters be adjusted themselves depending on the queue states. One parameter is the maximum probability to drop or mark the packet at the congestion state. This parameter can be adjusted to react the long burst of traffic, consequently reducing the congestion disaster. The other parameter is the queue weight which is also adjusted aggressively in order for the average queue size to catch up with the current queue size when the queue moves from the congestion state to the stable state.

  • PDF

Adaptive Queue Management Based On the Change Trend of Queue Size

  • Tang, Liangrui;Tan, Yaomu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1345-1362
    • /
    • 2019
  • Most active queue management algorithms manage network congestion based on the size of the queue but ignore the network environment which makes queue size change. It seriously affects the response speed of the algorithm. In this paper, a new AQM algorithm named CT-AQM (Change Trend-Adaptive Queue Management) is proposed. CT-AQM predicts the change trend of queue size in the soon future based on the change rate of queue size and the network environment, and optimizes its dropping function. Simulation results indicate that CT-AQM scheme has a significant improvement in loss-rate and throughput.

OQMCAR: An enhanced network coding-aware routing algorithm based on queue state and local topology

  • Lu, Cunbo;Xiao, Song;Miao, Yinbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2875-2893
    • /
    • 2015
  • Existing coding aware routing algorithms focused on novel routing metric design that captures the characteristics of network coding. However, in packet coding algorithm, they use opportunistic coding scheme which didn't consider the queue state of the coding node and are equivalent to the conventional store-and-forward method in light traffic load condition because they never delay packets and there are no packets in the output queue of coding node, which results in no coding opportunity. In addition, most of the existing algorithms assume that all flows participating in the network have equal rate. This is unrealistic since multi-rate environments are often appeared. To overcome above problem and expand network coding to light traffic load scenarios, we present an enhanced coding-aware routing algorithm based on queue state and local topology (OQMCAR), which consider the queue state of coding node in packet coding algorithm where the control policy is of threshold-type. OQMCAR is a unified framework to merge single rate case and multiple rate case, including the light traffic load scenarios. Simulations results show that our scheme can achieve higher throughput and lower end-to-end delay than the current mechanisms using COPE-type opportunistic coding policy in different cases.

Analysis of MMPP/M/1 Queue with several homogeneous two-state MMPP sources (여러개의 two-state MMPP 입력을 갖는 대기체계에 대한 계산방법)

  • 이계민;안수한;전종우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1354-1358
    • /
    • 1999
  • In this paper, we suggest a simple computational algorithm to obtain the queue length distribution in the finite queue, where the input process consists of several homogeneous two-state Markov modulated Poisson processes. With comparison to the conventional algorithm, is more practical, in particular, when a large number of input sources are loaded to the system.

  • PDF

DISCRETE-TIME $Geo^X/G/l$ QUEUE WITH PLACE RESERVATION DISCIPLINE

  • Lee Yu-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.453-460
    • /
    • 2006
  • A discrete-time priority queueing system with place reservation discipline is studied, in which two different types of packets arrive according to batch geometric streams. It is assumed that there is a reserved place in the queue. Whenever a high-priority packet enters the queue, it will seize the reserved place and make a new reservation at the end of the queue. Low-priority arrivals take place at the end of the queue in the usual way. Using the probability generating function method, the joint distribution of system state and the delay distribution for each type are obtained.

ANALYSIS OF THE MMPP/G/1/K QUEUE WITH A MODIFIED STATE-DEPENDENT SERVICE RATE

  • Choi, Doo Il;Kim, Bokeun;Lim, Dae-Eun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.295-304
    • /
    • 2014
  • We analyze theMMPP/G/1/K queue with a modified state-dependent service rate. The service time of customers upon service initiation is changed if the number of customers in the system reaches a threshold. Then, the changed service time is continued until the system becomes empty completely, and this process is repeated. We analyze this system using an embedded Markov chain and a supplementary variable method, and present the queue length distributions at a customer's departure epochs and then at an arbitrary time.

A Note on the Decomposition Property for $M^{X}$/G/1 Queues with Generalized Vacations (일반휴가형 $M^{X}$/G/1 대기행렬의 분해속성에 대한 소고)

  • Chae, Kyung-Chul;Choi, Dae-Won;Lee, Ho-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.247-255
    • /
    • 2002
  • The objective of this paper is to clarify the decomposition property for $M^{X}$/G/1 queues with generalized vacations so that the decomposition property is better understood and becomes more applicable. As an example model, we use the $M^{X}$/G/1 queue with setup time. For this queue, we correct Choudhry's (2000) steady-state queue size PGF and derive the steady-state waiting time LST. We also present a meaningful interpretation for the decomposed steady-state waiting time LST.

A Study on State Dependent RED and Dynamic Scheduling Scheme for Real-time Internet Service (실시간 인터넷 서비스를 위한 상태 의존 RED 및 동적 스케줄링 기법에 관한 연구)

  • 유인태;홍인기;서덕영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.823-833
    • /
    • 2003
  • To satisfy the requirements of the real-time Internet services, queue management and scheduling schemes should be enhanced to accommodate the delay and jitter characteristic of them. Although the existing queue management schemes can address the congestion problems of TCP flows, they have some problems in supporting real-time services. That is, they show performance degradation when burst traffics are continuously going into the system after the queue is occupied at a predefined threshold level. In addition, under the congestion state, they show large jitter, which is not a desirable phenomenon for real-time transmissions. To resolve these problems, we propose a SDRED (State Dependent Random Early Detection) and dynamic scheduling scheme that can improve delay and jitter performances by adjusting RED parameters such as ma $x_{th}$ and $w_{q}$ according to the queue status. The SDRED is designed to adapt to the current traffic situation by adjusting the max,$_{th}$ and $w_{q}$ to four different levels. From the simulation results, we show that the SDRED decreases packet delays in a queue and has more stable jitter characteristics than the existing RED, BLUE, ARED and DSRED schemes.mes.mes.

Balking Phenomenon in the $M^{[x]}/G/1$ Vacation Queue

  • Madan, Kailash C.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.491-507
    • /
    • 2002
  • We analyze a single server bulk input queue with optional server vacations under a single vacation policy and balking phenomenon. The service times of the customers as well as the vacation times of the server have been assumed to be arbitrary (general). We further assume that not all arriving batches join the system during server's vacation periods. The supplementary variable technique is employed to obtain time-dependent probability generating functions of the queue size as well as the system size in terms of their Laplace transforms. For the steady state, we obtain probability generating functions of the queue size as well as the system size, the expected number of customers and the expected waiting time of the customers in the queue as well as the system, all in explicit and closed forms. Some special cases are discussed and some known results have been derived.