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TRANSIENT DIFFUSION APPROXIMATION
FOR M/G/m/N QUEUE WITH STATE
DEPENDENT ARRIVAL RATES

Yanc Woo SHIN

ABSTRACT. We present a transient queue size distribution for M/G/m /N
queue with state dependent arrival rates, using the diffusion process
with piecewise constant diffusion parameters, with state space [0, N]
and elementary return boundaries at z = 0 and at £ = N. The model
considered here contains not only many basic models but the practical
models such as as two-node cyclic queue, repairmen model and overload
control in communication system with finite storage buffer. For the ac-
curacy check, we compare the approximation results with the exact and
simulation results.

1. Introduction

We consider an M/G/m/N queue with state dependent arrival rates
where the interarrival times of customers have exponential distribution
with parameter Ay, (k =0,1,---,N), when there are k customers in the
system. The service time of each customer has general distribution with
mean 1/p and variance o2, which are independent of the interarrival
times and the number of customers in the system.

The M/G/m/N queue with state dependent arrival rates generalizes
many practical queueing models such as two-node cyclic queue, M/G/m
queue with finite source, M/G/m queue with balking and can be applied
to overload control in communication system with finite storage buffer.

Time dependent queue size distribution for A{/AM/m queue with finite
source has been obtained by Sharma and Dass [21]. Except for special
cases as above, there is no analytic or computationally tractable ap-
proach for the time dependent queue size distribution in the M/G/m/N
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queue with state dependent arrival rates. There have been various diffu-
sion models developed for ordinary multi-server queues such as GI/G/m
queue and M/G/m queue : for stationary distribution, see Kimura
(14,16], Halachmi and Franta [12], Yao [24], for transient distribution, see
Choi and Shin [4,5]. For more general or extended multi-server queues,
many diffusion models also have been developed by Chot and Shin [7],
Kimura and Ohsone [15]and Ohsone [18] for group arrivals; by Choi
and Shin [6, 8] and Yao and Buzacott [25] for queues with finite wait-
ing spaces; and by Biswas and Sunaga [2], Sivazlian and Wang [19] for
queues with state dependency.

The purpose of this paper is to propose a diffusion approximation of
time dependent queue size distribution for M/G/m/N queue with state
dependent arrival rates. In this paper we use a diffusion process with
elementary return boundaries at # = 0 and z = N and with piecewise
continuous infinitesimal mean and infinitesimal variance. In section 2,
we give examples of our model. In section 3, we formulate a diffusion
process and derive the solution (in Laplace transform form) of diffusion
equation. In section 4, we approximate the time dependent queue size
distribution for the M /G /m /N system with state dependent arrival rates
and check the accuracy of approximation by numerical comparison with
simulation results.

2. Examples

(1) M/G/m queue with finite source.

A typical application of the queue with finite source is the machine
repairmen model where the calling population is the machines and an
arrival corresponds to a machine breakdown. The repairmen are the
servers. We assume m servers are available and that the service times
have general distribution with mean 1/ and variance o2. The life time
of each machine is exponential with parameter A and is independent
of that of other machines. If we concern the number of breakdowns.
this system can be modeled as M/G/m /N queue with state dependent
arrival rates A\ = (N — k)A, £ =0,1,--- ,N.

(2) Two-node cyclic queue.
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The flow of mechanism of the two-node cyclic queue is such that each
job passes through each node in a cyclic manner, repeating the process
indefinitely. Two node cyclic model can be applied to the analysis of
multiprogramming computer system of control processing unit (CPU)
and input output device (I0OD). We assume that there are m servers at
node 1 and the service times at node 1 are independent and identically
distributed (i¢d) and general distribution with mean 1/ and variance
o?. We assume that there are c servers at node 2 and the service times at
node 2 are iid and have exponential distribution with mean 1/ and are
independent of the service time at node 1. We assume that there are N
jobs in the system, each of which passes through the node 1 and node 2
cyclically, repeat indefinitely. We denote this model as (M/c||G/m)/N.
If we concern the number of customers at node 1, this system can be
modeled as M /G/m /N queue with state dependent arrival rates Ay =
min(N — k,c)A, A =0,1.--- N,

(3) M/G/m queue with balking.

We consider M /G /m queue where arrivals become discouraged when
the queue is long and may not wish to wait. We assume that if there are
k customers in the system then the arrival rates are Ay and

A2 A2 -2 AN 2 AN =0.

This model is the typical M/G /m /N queue with state dependent arrival
rates.

(4) Admission control.

Suppose that there are s arrival sources, marked by A Ay, e LAy,
respectively, each with arrival rate A9, A9, -+ | A% and there are n thresh-
old valus Iy, Ivy, - - - , Iy, based on which the arrival rate is adjusted. All
the arrivals are accepted when the queue size is less than Iy, arrivals
from A, are rejected when the queue size is greater than Iy, arriv als
from both A4, and A, are rejected when the queue size is greater than
I, ete, and when the queue size is greater than IV, only the arrivals
from _‘i,,+1,r~1,,+2, e is are accepted, where Iv; < I(;y;. In this case
we have A\, = Z;:i+1 AV =01, i, (g = 0) and Ax = Ap; of
K; <k < Wiy accepted
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3. Diffusion equation and the solution

The essence of the diffusion approximation is to approximate the pro-
cess with discrete state space by the process with continuous state space
which is mathematically tractable. As a process approximation of sto-
chastic process representing the number of customers in the M/G/m/N
queue with state dependent arrival rates, we take a diffusion process
{X(t),t > 0} with state space [0, N] and with the elementary return
boundaries at z = 0 and # = N. Preliminary materials on diffu-
sion processes can be found in standard texts such as Karlin and Tay-
lor [13] and Cox and Miller [3]. The behavior of the process X(t) in
the interval (0, V) is specified by the diffusion parameters a(z) and
b(z), called the infinitesimal variance and infinitesimal mean, respec-
tively. By following the same reason as Kimura [14] and Choi and Shin
[4], we choose the diffusion parameters a(z) and 5(z) as follows: for
k—1<aoe<k, k=1,2--- N,

(3.1) a(x) = gy + m%n( k,m)uda?
b(x) = Ak—1 — min(k, m)u.

Next we specify the boundary behaviors of the process {X(t).t > 0}.
The lower and upper boundaries of the state space of X(t) correspond
to the zero state and the system capacity N in the queueing system,
respectively. Thus the holding times at the lower and upper boundaries
of process {X(t),t > 0} correspond to the idle period of queueing sys-
tem and the time period during which the system is full, respectively.
Since interarrival time has exponential distribution with parameter Ag
when there is no customers in the system, the idle period has exponen-
tial distribution with mean 1/A¢. Thus we assume that the holding time
at the lower boundary of diffusion process X(t¢) has exponential with
parameter Ag. Even for the ordinary M/G/m/N system, the proba-
bility distribution of the time period during which the system is full is
not known. Hence the holding time of diffusion process at the upper
boundary should be approximated (see (4.3) and (4.4), below). Since
the set of Cox distributions is dense in the set of general distributions
on (0, co ) (eg. see Asmusen [1]), first we derive the transient den-
sity function of diffusion process when the holding time at the upper
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boundary has Cox distribution and then by continuity theorem we ob-
tain the probability density function of diffusion process when the hold-
ing time has general distribution (see Remark 1, below) The Laplace
transform h*(s) of the density function h(t) of n-stage Cox distribution
is B*(s) = iy di(l = e) [Tj=, 4%, where 0 < i < 1,(1 <4 < m),
dy =1 and d; = cyez---¢i—y, (1 <2 £ n). The mean A~! of n-stage
Cox distribution is A™! = Z:;l di/pi. Let f(z,t|zo) be the probability
density function of X(¢) given X(0) = xy, 1.e.

fla. tlay)dr = Pla < X(t) < x + dz]|X(0) = zo).

Throughout this paper we assume that the initial value X(0) = z¢ is
a nonnegative integer. Then f(xz,t|zg) satisfies the following Fokker-
Planck equation (Feller [9], Gelenhe {10])

af 10‘2
9t 2022

+ Ao P(£)8(x — 1) +Z“ (1—ci Qi(t)d(x = N + 1),

. 3 . «
a(x)fla, tlxg)} — = {b(ar;;f(;r,t]z‘g)}
(3.2)

where 6(-) i1s Dirac’s delta function and P(t) is the p1obabi1ity that the
process X(t) is at the lower boundary at time ¢t and @;(t) is the proba-
bility that the process X(t) is in the /th stage on the upper boundary at
time ¢. The behaviors on the lower and upper boundaries are described
by the following first order differential equations

dP(t)

(3.3) = —hP(t) + ll}ilgCr,rf,
(3.4) dQ;(t) _{ —piQi(t) —limy v Cyp o f fi=1

’ dt /11(2 )+ p16i—1Qia(t) fl<e<n
where C,  f = 14 {a (z,t|zo)} — b(x)f(z,tlzo). Since the bound-
aries at ¢ = 0 and z = \/ behave as the absorbing boundaries during

their holding times, it is natural to assume (Cox and Miller [3])

(3.5) lim f(x,t|ze) =0,

r|0

(3.6) 1‘1];}\1’ fla, tlxg) = 0.
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The initial conditions for P(t), Qi(t) and f(z,t|zo) are given by

(3.7) f(z,0]ze) = 8(x — z0),
, 1 fzeg=0
(38) P) = { 0 if zo >0,

(3.9) Qi(0) = { L P = Nandt =

0 fzp<Nore>1
For the convenience of solving partial differential equation, let ax = a(k),
by = b(k), k=1,2,--- ,N and fi(z,t|zo) be the restriction of f(z,t|z¢)
tok—1<z<k,t>0,k=1,2,..-,N. For the notational simplicity we
set gr(t|zo) = f(k,t|xo),k =0,1,2,--- | N. Then from (3.5) and (3.6),
it is easy to see that go(t|zo) = gn(t|re) = 0.

THEOREM 1. The Laplace transform solution f*(x,s|rg) of the par-

tial differential equation (3.2) with conditions (3.3)-(3.9) is given by for
k—l<z<kk=1,2---,N,

sinh Ag(z —k+ 1)

« , by ; .
fi (@, slao) =exp(==(z — k))——= gi(slzo)
ak sinh Ag
, by inh Ap(z — k
(3.10) exp( (e — k4 1) SRR R G,
ag sinh A,

where Ay = \/2ars + b'f,/ak, k=1,2,--- N
The unknown terms P*(s) and ¢i(s|xo), k¥ =1,2,--- | N — 1, satisfy
the following N x N tridiagonal system

(3.11) T(s)3(s) = 0(s),

where T(s) = (P*(s),g7(sl2o), - . gn_,(s|T0))t and T(s) = Trid(pls),
q(s),7(s)) is the N x N tridiagonal matrix with diagonal vector §{s) =
(g0(s), q1(s), -+ ,qgn-1(3)), subdiagonal vector p(s) = (pi(s),p2(s). -,
pn-1{s)) and superdiagonal vector 7(s) = (ro(s),71(s), -+ . rx_2(5)).
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The components of pls), ¢(s) and 7(s) are as follows:

pi(s) = —Ao, prls) = By, k=12, \N—1,
(]0(5) :)‘0+5s qk(;s):Ck-i-ls k= 1’23"' vN—‘Zw

b

(3.12) gn-1(s) = Cn — h*(s)Bne"on
ri(8) = —=Bryr, k=0,1,--- N =72,
vp(s) = 1(zg = k), k=0,1,--- ,N -2,
vn-1(s) = Wag = N — 1)+ h*(s)lizo = N),

where
arAp _ s 1 )
B, = kak -k : k=12 A
2 sinh A4 ’
by ap—1Ap_ b arpArg
Cr=— kol 4k - Pl coth Agoy + -: + "_) £ coth Ay,
k=23, .N.

For the similar derivations of (3.10) and (3.11) with (3.12) see the
appendix in Choi and Shin [4] and appendix in Choi and Shin [6, 7],
respectively.

REMARK 1. From (3.11) and (3.12), we sce that gf(s]re) depend
on only the Laplace transform 2*(s) of holding time but not on the
(27 (s) which is the Laplace transform solution of (3.4). By the continuity
theorem of the Laplace transform and the fact that the set of all Cox
distributions is dense in the set of probability distributions on (0, oc)
(Assmusen [1]), (3.11) (thus (3.10)) hold true when the holding time at
the upper boundary has general distribution.

REMARK 2. An explicit expression of the inverse Laplace transform
gr(t|so) of gr(s|ae) does not seem to be accomplishable. Instead, there
are many algorithms available for the numerical inversion of Laplace
transforms. For example, there are three staudard routines currently
available from the ACM library of software algorithms: Algorithm 368
(Stehfest [22]); Algorithm 486( Veillon [23]); Algorithm 619 (Piessens and

Huysmana [20}).
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Let Pn(t) be the probability that the process X(t) is on the upper
boundary ¢ = N at time t. The probability Py(t) is obtained from the
conservation of probability

N
P(t) +/ flz,t|lzo)de + Pn(t) = 1.

Taking Laplace transform and then applying theorem 1, we have
(3.13)

N
Pi(s) =3 = (P'()+ [ f*(a.sleo) de)

1 n gt
=- - (}; | iz slzo)de + P ()
__}_~lz L‘lk[* )(CoshAk_ b B 6‘—“—:% )
s s = sinth Ay aprAr  sinh 4;
cosh A, by ek ]
X 3 — — P*(s).
+gk—1(é,$0)(sinh Ay arA; sinh Ak) (s)

Now we derive the stationary solution. Let f(z) = lim;_.o f(2,t|20),
P = limy_.o P(t) and Py = lim;woo Pn(t). To cobtain the limiting
probability from the Laplace transform solution, we use the final value
theorem for Laplace transform; lim,_ o, f(t) = lim,_, sf*(3)

THEOREM 2. The stationary probability density function f(x) of
X(t) is given by;
(3.14)

g€ -120 p fo<z<1
1 al

f(z) = qke'Yk(l'_k)P ifh—-1l<zr<k, k=23,--- N -1,
gvi=EUp N 1<z < N,

eTN -1

2b, M -12)
Where'ykzﬂ k=1,2.--,Nand g = ¢ 112(“,

g = q exp(E]_r, i)k =2.3,--+ | N. The probability P that the pro-
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cess X(t) is in the lower boundary is given by

—1—92X
Pl Sinte, 5,
(3.15) 1
_q_[i_(b_N + __(6_'7N -1 + ))} -
e —1°A 4y ™ '

The probability Py that the diffusion process X (t) is on the upper
boundary is given by

Lby _onP ifby #0

Ae"N—qu 1 N
(316) PN = { 1ay P fb _ 0
A AN -1 1 v =Y,

where 1/A is the mean holding time at the boundary x = N.

For the similar derivations of (3.14)-(3.16), see the appendix of Choi
and Shin [6].

REMARK. We consider the case that holding time has general distri-
bution. When we consider the formula (3.16) as a function of holding
time distribution at the upper boundary, it depends only on the first
moment of holding time. From the fact that if a distribuiton F (t) has
finite ¢-th moment, i.e. [OOC v4dF(x) < oo, then there exists a sequence
of Cox distributions {F}} such that

/ dF(x) — / z?dF(x)
0 0

for 0 < p < ¢ (e.g. see Asmusen [1]), the formula (3.16) holds for
arbitrary distribution of holding time with finite first moment.

4. Diffusion approximation and numerical results

Let Q(t) denote the number of cusomers in the M/G/m /N queue with
state dependent arrival rates at time . Now we derive the approximation
P(k,t|zo) of probability function p(k,tjze) = P(Q(t) = k|Q(0) = x9)
and its limiting distribution P(k) = lim— P(k,tlzg). Since we have
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approximate a discrete state process with a continucus state process,
we need to discretize the probability density function f(z,t|zo). The
discretization of probability density function f(z,t|z) can be done in
serveral different ways (see Gelenbe et al.[11]). Following the method of
Choi and Shin [6], we adopt the following:

P(0,t) := P(t)/Total
(4.1) P(n,t):= f(n,t)/Total, n=1,2,--- N -1,
P(N,t):= Pn(t)/Total

where Total := P(t) + Pn(t) + Z:’V_ll

Using the disretization method (4. 1) we have the following diffusion
approximation for stationary queue size distribution

P/Total if k=0,
(4.2) P(k)={ Pg/Total if k=12,--- N -1,
Py /Total if k=N,

where Total _P+Z f(A)—}—PN

From the argument on formulatmg the diffusion process in section 3,
we should determine the distribution of holding times at the boundaries.
Since the interarrival time has exponential with parameter Ao when there
is no customers in the system, the idle period is exponential with pa-
rameter \p. The distribution of the time period that the system is full,
we have the following possible two choices

(4.3) hna(t) =m(1— S)™ ts(t),
(4.4)

m(1 — Se(t)™ Lse(t), if m< N
hnp(t) =< (1= Se(t)"

x ((m = 1)se(t)(1 = S(t)) + (1= Se(t))s(t)), if m=N

where S(t) is the distribution function of the service time and Se(t) =

,ufﬂt(l — S(7))dr is the distribution of the remaining service time and
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se(t) = p(1 — 5(1)) 1s its probability density function. (4.4) is obtained
from the approximation assumption in Nozaki and Ross [17, p. 828]).
For the system with exponential service, the holding time at the upper
boundary z = N is exponential with parameter myu from the memoryless
property of exponential distribution. Note that when S(t) = 1 — e ~#%,
l.e. the service time is exponential, hy 1(t) = An 2(t) = mue™™**, which
coincides with the exact results. Although (4.4) seems to be more natural
than (4.3), many simulation results show that the approximate results
using (4.3) is more accurate than those of (4.4). Therefore, we adopt
(4.3) as a holding time distribution at the upper boundary in executing
the calculations of the approximate formula. The numerical inversion
of Laplace transform is derived by using the Algorithm 368 in ACM
22]. The simulation results (denoted by "sim” in tables) are obtained
by 30,000 times repetitions.

Table 1 gives the comparision of the diffusion approximation with the
analytic result [21] for M/M/3 queue with finite source N = 9. Table 2
and table 3 present the munerical comparison of diffusion approximation
with simulation for M/E, /3 and M/H2/3 queue with finite source N =
9. The numerical results for the two-node cyclic quenes (Af/5]|A1/3)/10
queue, (M/5||E2/3)/10 queune and (M/5||H2/3)/10 queue are given in
tables 4 - 6. In tables P(n,t) denotes the probability that the number
of customers in the system at time # is n. In Table 3 and Table 6 we use
the service time density function s(t) = pyuje ' 4+ pouse 2 where
1 =05(1+ m).pg =1—p; and gy = 2py, o = 2py. In tables, "diff”
denotes the diffusion approximation results. From the numerical results
1t 1s concluded that the diffusion approximation gives very accurate re-
sults for exponential service time. QOur approximation for nonexponen-
tial service system is slightly less accurate than for exponential service

system.
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Table 1. M/M/3 Queue with Finite Source N =9
A =.30, p=.30, 7o = 4

time 4.0 8.0 12.0 16.0 20.0 00
P(n,t) | method
P(0,t) diff .003 .002 .002 .002 .002 002
exact .001 .001 .001 .001 .001 .001
P(1,t) diff 013 .009 007 007 .007 .007
exact .010 007 .006 .006 .005 .005
P(2,t) diff .040 .028 .025 .024 .023 023
exact 039 027 .023 .022 022 022
P(3,t) diff .083 .060 .054 .052 .052 .052
exact .083 .060 0583 .051 051 .051
P(4,t) diff .143 113 .104 102 .101 101
exact 147 114 .105 .102 102 101
P(5,t) dift 203 177 169 167 167 168
exact .208 .180 172 170 .169 .169
P(6,t) diff 224 223 222 222 221 221
exact .226 226 .226 225 .225 225
P(7,t) diff 176 .210 218 221 221 221
exact 176 212 222 224 225 225
P(8.,t) diff 091 132 144 147 148 148
exact 087 132 145 .149 150 130
P(9,t) diff .023 047 .055 057 057 .058
exact 021 .041 .047 .049 .050 050
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Table 2. M /FE;/3 Queue with Finite Source N =9
A=.30, p=.30, 2o =0

727

time S 10| 30 |50 80 |10.0 |16.0 |20.0
P(n,t) | method
P(0,t) diff 290 |.123 |.014 |.004.002 |.001 |.001 |.001
sim | .264 |.077 |.004 [.001].000 |.000 |.000 |.000
c.d .004 |.004 {.001 |.000|.000 |.000 |.000 {.000
P(1,t) diff 354 | .227 | .046 |.018|.008 |.006 |.005 |.004
sim 376 .227 1.026 |.010(.005 |.004 [.003 |.003
c.i .006 [.007 |.002 |.001].001 [.001 }.001 [.001
P(2,t) diff 265 | .310 }.120 |.055.028 |.022 [.017 |.017
sim 245 |.299 |.088 |.039(.023 |.017 |.014 {.014
c.d 004 |.007 |.003 |.003{.002 [.001 |.001 |.001
P(3.t) | diff |.081 |.224 |.194 |.112].065 |.054 | .044 | .042
st 089 |.234 |.173 | .0981.061 [.051 |.044 |.043
c.d 003 |.004 |.004 {.002|.003 |.002 |.002 {.003
P(4,t) diff 009 [.095 |.237 |.183|.129 |.112 | .096 |.094
st 021 |.114 |.231 |.178].131 |.119 |.103 {.102
¢l .002 |.004 |.005 |.005}.005 |.005 |.003 |.003
P(5,t) diff 000 |.020 |.210 |.232].205 |.191 |.175 |.173
simn .004 |.039 |.229 | .2291.205 |.200 |.185 |.187
c.i .001 |.002 [.005 |.004|.005 |.005 |.004 |.004
P(6,t) diff 000 |.001 |.127 |.216} .248 | .251 |.249 | .248
sim 000 |.009 |.155 |.220|.246 |.245 |.256 |.252
ci .000 |.001 |.005 |.006|.005 |.005 |.004 |{.005
P(7.t) diff 000 |.000 |.046 |.133].205 |.226 |.245 |.248
sim .000 {.001 {.071 |.150.203 |.218 |.230 |.235
c.i .000 |.000 {.003 |.004.005 |.005 |.005 |.005
P(8.t) diff 000 | .000 |.007 |.043{.093 |.113 |.136 |.139
sim .000 |.000 |.021 }.062|.102 |.118 |.130 |.130
cd .000 |.000 |.002 |{.003|.004 |.004 |.004 |.004
P(9.t) diff .000 |.000 |.000 |.004|.017 |.024 |.032 |.034
st .000 |.000 |.002 |.012].023 |.027 |{.034 |.035
¢ 000 |.000 |.001 {.001].002 |.002 }.001 {.003
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Table 3. M/H2/3 Queue with Finite Source NV =9
A=.30, 0 =.30, zg =0

time 51 10| 301} 50| 80 |10.0 |16.0 |20.0

P(n,t) [ method
P(0,t) diff 301 |.133 |.019 |.007 |.004 |.003 {.003 |.002
sim 292 | .105 |.009 |.003 |.002 |.001 |.001 }.001
ci .005 |.003 {.001 |.001 |.000 |.000 {.000 [.000
P(1,t) diff 337 | .223 [.055 |.026 |.015 |.012 [.010 |.010
sim 392 |.276 | .058 |.025 |.013 |.010 |.008 |.007
c.i .006 |.006 |.003 |.002 {.001 |.001 |.001 |{.001
P(2,t) diff 250 [.282 |.123 |.067 |.041 |.035 |.030 |.030
sim 224 | 307 |.146 | .076 |.042 |.035 |.026 |.020
c.i .005 |.005 |.004 {.003 |.003 |.002 |.002 }|.002
P(3.t) diff 094 |.213 |.179 |.114 |.078 |.068 }|.0GO |.059
sim 073 |.193 |.206 |.131 |.087 |.074 |.059 |.057
c.i .004 |.005 |.004 |.005 |.003 |.003 [.003 |.003
P(4,t) diff 018 [.108 |.207 |.165 |.128 |.116 |.106 |.105
sim 017 |.087 |.222 |.187 |.143 |.125 |.108 |.103
c.i .002 |.002 |{.004 |.005 |.004 |.004 |.004 |.003
P(5,t) diff 001 1.035 [.190 |.197 |.178 }.169 |.161 |.160
sim 003 |.027 |.184 |.214 |.192 |.182 | .168 |.165
c.i 001 |.001 {.004 |.005 [.005 |.003 |.004 }.005
P(6,t) diff 000 [.006 |[.133 |.188 |.203 |.203 |.202 |.202
sim 000 |.005 |.114 |.186 |.213 |.216 |.215 {.210
c.i .000 |.001 |.003 |.005 |.005 |.007 |.005 |.005
P(7,t) diff 000 1.000 |[.068 |.138 |.181 |.192 |.201 |.202
sim .000 |.001 |.048 |.118 {.178 [.193 | .208 |.216
c.i .000 |{.000 |.002 |.004 |.003 |.004 |.004 |.004
P(8,t) diff 000 |.000 [.023 |.072 |.118 |.133 |.147 |.148
stm 000 |.000 |.012 |.051 |.101 |.124 |.150 |.155
c.i 000 |.000 |.001 |{.003 |.003 |.005 |.00G |.004
P(9,t) diff 000 |.000 |.004 {.025 |.055 |.067 |.079 |.081
sim .000 |.000 |.001 |.009 |.028 |.039 |.057 }.060
c.i .000 |.000 |.000 |.001 {.002 |.002 |{.002 |.003
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Table 4. Two-node Cyclic Queue (M/5||M/3)/10

A=06, p=1.0, 20 = 5
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time 7 1.0 2.0 3.0 5.0 7.0 10.0 20.0

P(n,t) method
P(0,t) diff 003 .009 023 029 .033 .034 035 035
sim 003 .008 021 025 .028 .032 .030 .030
c.i 001 001 .002 002 .002 .002 .002 .001
P(1,t) diff 027 043 .070 .080 .086 .083 .089 .090
sim 025 041 067 079 .089 .088 .087 091
c.1 .002 .003 .003 002 .003 .003 .004 .003
P(2.t) dift 077 094 115 123 .130 132 133 134
sim 071 091 113 127 .130 132 135 137
c.1 003 .004 .004 004 004 .005 .005 .005
P(3,t) diff 125 127 127 128 131 133 133 134
sim 124 125 .128 .126 135 134 133 135
c.i .004 003 .005 .004 004 .005 .004 003
P(4,t) dift 178 160 .138 134 133 133 134 134
sim 177 164 137 134 134 133 137 134
c.i 004 .003 .003 .005 .005 .006 .004 005
P(5,t) diff 206 .180 147 .139 135 134 134 134
sim 214 .182 151 1138 131 136 137 138
ci .005 004 .005 .004 004 004 .005 .004
P(6 t) dift 197 179 51 142 136 .135 134 134
Stm 200 .181 155 145 137 139 138 132
c.1 006 006 005 005 004 .005 005 004
P(7.t) diff 125 127 121 116 110 108 107 107
sim 126 126 123 .120 114 .108 108 .109
c. 003 .004 .005 .003 003 004 .003 005
P(8,t) diff 049 061 071 070 068 066 .065 065
sim 047 062 071 072 067 065 065 063
c.1 .003 .003 .004 .003 003 .003 002 .002
P(9,t) diff 011 0138 0238 .030 029 028 .0238 .028
Sl 010 017 027 027 029 027 .026 026
c.i 001 002 .002 002 002 .001 002 002
P(10,t) chff 001 003 007 .008 008 008 008 008
sim .001 .002 .005 .006 .005 .005 .005 005
c.i .001 001 .001 .001 .001 .001 .001 001
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Table 5. Two-node Cyclic Queue (M/5||E;/3)/10
A=06, u=1.0, 20=25
time 7 1.0 2.0 3.0 5.0 7.0 10.0 20.0
P(n,t) method
P(0,t) diff 001 .004 015 .021 .025 026 .027 027
sim .001 .002 .012 017 .023 025 026 024
c.i .000 001 .001 .002 .002 .002 .002 .002
P(1,t) diff .015 .029 .058 .071 081 084 .086 .087
sim .004 012 .040 057 070 074 079 .078
c.d .001 .001 .003 .003 .003 003 .003 .004
P(2,t) diff .060 .081 112 125 .136 140 142 143
sim .022 .044 .080 097 117 122 125 127
c.i .002 .003 .003 .003 .003 003 004 .003
P(3,t) diff 121 127 130 133 .138 141 142 143
sim 075 091 115 127 .138 140 143 143
c.l .003 .003 .004 .004 .0063 005 004 .004
P(4,t) diff .194 176 .150 144 142 143 143 143
sim 154 154 .150 148 150 150 1438 153
c.1 .004 .004 .005 .003 .003 006 .005 005
P(5,t) diff 236 205 .165 153 .146 144 143 143
sim 240 211 175 165 .160 156 .156 152
c.l .006 .004 .005 .004 .004 004 .004 006
P(6,t) dift 220 202 171 .159 .149 146 144 143
sim .260 228 .186 174 .150 151 144 146
ca 004 .006 .004 .004 004 005 .004 005
P(7,t) diff 118 .126 125 120 112 108 106 105
sim 165 .160 141 127 111 107 106 105
c.i 004 .004 004 .004 .003 004 .005 .004
P(8,t) diff 031 044 .058 .058 .055 053 .051 051
sim 064 076 073 .065 .059 055 .052 055
c.1 .003 004 .003 002 002 002 .003 004
P(9,t) diff 003 .007 014 015 .015 014 014 .013
sim 014 .021 .025 021 .019 017 017 .016
c.i .001 001 .002 .002 .002 002 .001 .001
P(10,t) diff .000 .000 .001 .002 .002 002 .002 002
sim 001 .002 .003 .003 .002 002 .003 .002
c.1 .001 .001 001 .001 .001 001 .001 001
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Table 6. Two-node Cyclic Queue (M/5||H2/3)/10
A= 06, Iy — 5
time 7 1.0 2.0 3.0 5.0 70 | 10.0 | 20.0
P(n,t) method
P(0.,t) diff .007 015 032 038 .041 .042 042 .042
sim .007 .014 .029 034 .034 034 .034 .033
c.1 .001 .001 .002 .002 .002 002 .002 .002
P(1t) dift 037 053 077 .084 .089 .090 .090 .091
sim .041° | 059 .091 .098 .099 095 .098 099
c.1 002 .003 003 .004 .003 003 .004 004
P(2,t) diff 087 100 115 120 124 126 .126 126
sim 097 117 137 141 141 141 .140 .140
c.i .003 .003 .005 .004 .004 .004 .004 005
P(3.t) diff 126 125 123 .123 125 126 126 126
sim 140 | 142 ¢ 138 | .138 134 | 134 | 131 | .131
c.i .003 005 .004 004 004 .003 .004 .004
P(4.,t) diff .165 149 130 127 126 126 126 126
SNy .188 .165 139 1131 128 126 128 128
c.i .004 .004 005 .004 .004 .004 .004 .003
P(5,t) diff 186 163 136 129 127 127 127 126
sim 203 175 140 129 126 124 127 123
c.1 .004 005 004 .004 004 .004 .004 .004
P(6,t) diff .180 162 138 131 128 127 127 126
sim 177 162 136 128 127 127 .126 .130
c.1 005 .004 .005 .003 .003 .004 .004 .004
P(7.t) diff Jd26 ) 125 116 | 112 | 108 ] (107 | 106 | .106
sim 102 103 105 104 104 .108 .106 104
c.1 .003 .003 003 .003 .003 .004 003 .005
P(8,t) diff 062 071 077 077 074 073 .073 073
sim 038 .049 060 063 067 072 070 .069
c.d 003 .003 .003 .002 .003 .003 .003 .004
P(9,t) diff .020 029 .039 041 040 .039 .039 .039
S .007 012 022 .028 .031 .032 032 .034
c.1 .001 .001 002 002 .003 .002 002 002
P(10,t) dift 004 008 016 018 018 017 017 017
sim .001 .002 .004 .007 .008 007 .009 .007
c. .000 001 .001 .001 001 .001 .001 001
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