• 제목/요약/키워드: question-answering system

검색결과 155건 처리시간 0.038초

질의응답 시스템에서 의미 연관성 참조를 위한 온톨로지의 자동 구축 (Automatic Ontology Construction for Semantic Relevance in Question Answering System)

  • 김혜정;강보영;황선욱;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.109-111
    • /
    • 2003
  • 본 논문에서는 질의응답 시스템에서 질의에 포함된 언어 정보와 검색 대상 문장 사이의 의미 연관성을 참조하여 정확한 결과를 추출 가능하도록 하는 온톨로지의 자동 구축 방법을 제시한다. 검색 대상 문장은 웹에서의 활용과 표준화를 위하여 단어 태그, 품사 정보 및 파싱 구조를 갖는 XML 문서로 변환하고, 이 구조를 이용한 연관성 분석을 위해 의미망을 갖는 온톨로지를 자동으로 생성할 수 있도록 하였다. 온톨로지에서 의미 연관성을 결정하는데 중요하게 활용되는 개념으로써는 동사의 행위, 명사절 그룹 매치, 복합명사 선별, 고유명사 매치, 품사 태깅 등이 있다. 제안한 방법의 성능은 NIST TREC-10의 질의 응답문을 사용해서 단어 패턴 매치 방법과 비교 분석하였으며, 본 논문에서 제안한 방식이 재현율과 정확율 측면에서 우수한 성능을 나타냄을 입증하였다.

  • PDF

백과사전 질의응답을 위한 구문정보기반 정답색인방법 (A LF based Answer Indexing Method for Encyclopedia Question-Answering System)

  • 김현진;이충희;오효정;왕지현;장영길
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.511-513
    • /
    • 2005
  • 본 논문은 정답 색인 방법을 이용하여 응답 속도가 빠르고 정확한 백과사전 질의응답 시스템을 구현하는 방법을 제안한다. 논문에서 제안한 정답 색인 방법은 대상 문서에서 160여 개의 정답 유형 범주에 해당하는 정답 후보를 인식하고, 정답 후보와 색인 범주에 속하는 키워드를 색인단위로 정의하여 저장하였다. 특히 용언정보에 대해서는 LF(Logical Form)단위로 색인하여 색인 정확도를 높였다. 정답 랭킹에서는 사용자 질문에서 각 단어별로 문장 성분. 단어 가중치 정보 등을 이용하여, 필수단어를 산정하고 이를 정답랭킹의 방법으로 활용하였다. 이러한 방법론은 용언 정보를 활용해야 효과적인 백과사전이라는 문서 도메인의 특성을 반영하고, 빠른 질문 응답 시간을 보장하는 백과사전 질의응답 시스템에 적합하다.

  • PDF

R3 : 테이블의 구조 정보를 활용한 오픈 도메인 질의응답 시스템 (R3 : Open Domain Question Answering System Using Structure Information of Tables)

  • 강덕형;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.455-460
    • /
    • 2022
  • 오픈 도메인 질의 응답에서 질의에 대한 답변은 질의에 대한 관련 문서를 검색한 다음 질의에 대한 답변을 포함할 수 있는 검색된 문서를 분석함으로써 얻어진다. 문서내의 테이블이 질의와 관련이 있을 수 있음에도 불구하고, 기존의 연구는 주로 문서의 텍스트 부분만을 검색하는 데 초점을 맞추고 있었다. 이에 테이블과 텍스트를 모두 고려하는 질의응답과 관련된 연구가 진행되었으나 테이블의 구조적 정보가 손실되는 등의 한계가 있었다. 본 연구에서는 테이블의 구조적 정보를 모델의 추가적인 임베딩을 통해 활용한 오픈 도메인 질의응답 시스템인 R3를 제안한다. R3는 오픈 도메인 질의 응답 데이터셋인 NQ에 기반한 새로운 데이터셋인 NQ-Open-Multi를 이용해 학습 및 평가하였으며, 테이블의 구조적 정보를 활용하지 않은 시스템에 비해 더 좋은 성능을 보임을 확인할 수 있었다.

  • PDF

빈발질의를 추천하는 질의 응답 시스템 (Question Answering System with Recommending FAQ)

  • 안찬민;최범기;이주홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.500-503
    • /
    • 2009
  • 질의 응답 시스템은 사용자가 입력한 질의에 대한 답변 문장들을 보여주는 시스템이다. 대부분의 기존의 연구는 사용자의 질의문에 대해서 가장 적합한 문장들을 찾는 방법을 제안하고 있다. 그러나 질의문에 사용되는 단어들은 근본적으로 애매모호성을 포함하고 있기 때문에, 시스템이 사용자의 정확한 질의 의도를 파악하여 가장 적합한 문장들을 찾는 것은 불가능하다. 이러한 근본적인 문제를 개선하기 위해서 여러가지 연구들이 수행되었다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법으로서 시스템에서 답변이 준비된 빈발 질의(FAQ)들 중에서 사용자의 질의를 함의하는 것들을 추천하여 사용자가 자신의 질의 의도에 따라 정확한 답변을 효과적으로 찾도록 도와주는 방법을 제안한다.

KorQuAD를 활용한 한국어 오픈도메인 질의응답 시스템 (Korean Open Domain Question Answering System Using KorQuAD)

  • 조상현;김민호;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.321-325
    • /
    • 2019
  • 오픈 도메인 질의응답이란, 질문을 줬을 때 그 질문과 연관성이 높은 문서를 검색하고 검색된 문서에서 정답을 추출하는 태스크이다. 본 논문은 기계 독해 데이터인 KorQuAD를 활용한 오픈도메인 질의응답 시스템을 제안한다. 문서 검색기를 이용하여 질문과 관련 있는 위키피디아 문서들을 검색하고 검색된 문서에 단락 선택 모델을 통해서 문서 질문과 연관성이 높은 단락들을 선별하여 기계 독해 모델에서 처리해야 할 입력의 수를 줄였다. 문서 선별모델에서 선별된 여러 단락에서 추출된 정답 후보에서 여러 가지 정답 모형을 적용하여 성능을 비교하는 실험을 하였다. 본 논문에서 제안한 오픈도메인 질의응답 시스템을 KorQuAD에 적용했을 때, 개발 데이터에서 EM 40.42%, F1 55.34%의 성능을 보였다.

  • PDF

그래프 신경망 기반 질의응답 시스템에서 그래프 병합을 활용한 재추론 기법 (Re-Inference Method using Graph Merging in Graph Neural Network based Question Answering System)

  • 이필원;김상훈;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.480-482
    • /
    • 2021
  • 최근 다수의 문서를 고려해야하는 다중홉(multi-hop) 추론과 같은 복잡한 문제를 해결하기 위해 계층적 그래프 신경망기반 질의응답 시스템이 제안되었다. 계층적 그래프 신경망 기반 질의응답 시스템은 사람의 정확도를 뛰어넘었으나 제한된 문서를 통해 추론을 진행하기 때문에 문서에 충분한 정보가 없을 경우 추론에 실패할 가능성이 존재한다. 따라서 본 논문에서는 위 문제를 해결하기 위해 정보를 재탐색하고 기존의 그래프 정보와 병합하여 기존의 정보와 새로운 정보를 고려하여 재추론 할 수 있는 그래프 병합 기법을 제안한다. 제안하는 그래프 병합 기법은 사전에 정의된 규칙에 의해 수행되며 노드의 병합 및 연결을 통해 새로운 그래프를 도출한다. 새로운 그래프는 그래프 신경망을 통해 추론을 진행하여 기존 정보와 새로운 정보를 고려한 정답을 도출할 수 있다.

BERT Q&A 모델을 활용한 장학금 정보 추출 및 추천 시스템 (A Recommendation System by Extracting Scholarship Information with a BERT's Q&A Model)

  • 강병준 ;김규진;박진아 ;장이준 ;주재현 ;구형준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.288-289
    • /
    • 2023
  • 본 논문은 글로벌 이슈로 인한 인플레이션과 대학 등록금 인상 우려 등으로 인해 장학금의 중요성이 부각되고 있는 상황을 고려하여 기존의 장학금 공고 게시물을 수집한 후 BERT Q&A (Bidirectional Encoder Representations from Transformers Question & Answering) 모델을 이용해 개별 맞춤형 장학 공고를 추천하는 시스템을 제안한다. 우선 웹 크롤링을 통해 장학금 정보를 수집하고, BERT Q&A 모델과 사전에 정의한 규칙 기반으로 핵심 정보를 추출한다. 이후 분류 과정을 거쳐 사용자가 입력한 정보와 매칭하여 조건에 맞는 장학금 게시물을 추천할 수 있는 어플리케이션을 구현하였다.

임베디드 시스템(Raspberry PI 5) 환경에서의 DistilBERT 구현 및 성능 검증에 관한 연구 (A Study on the Implementation and Performance Verification of DistilBERT in an Embedded System(Raspberry PI 5) Environment)

  • 임채우;김은호;서장원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.617-618
    • /
    • 2024
  • 본 논문에서 핵심적으로 연구할 내용은 기존 논문에서 소개된 BERT-base 모델의 경량화 버전인 DistilBERT 모델을 임베디드 시스템(Raspberry PI 5) 환경에 탑재 및 구현하는 것이다. 또한, 본 논문에서는 임베디드 시스템(Raspberry PI 5) 환경에 탑재한 DistilBERT 모델과 BERT-base 모델 간의 성능 비교를 수행하였다. 성능 평가에 사용한 데이터셋은 SQuAD(Standford Question Answering Dataset)로 질의응답 태스크에 대한 데이터셋이며, 성능 검증 지표로는 EM(Exact Match) Score와 F1 Score 그리고 추론시간을 사용하였다. 실험 결과를 통해 DistilBERT와 같은 경량화 모델이 임베디드 시스템(Raspberry PI 5)과 같은 환경에서 온 디바이스 AI(On-Device AI)로 잘 작동함을 증명하였다.

지인 기반의 스마트 지식공유 시스템에 관한 연구 (A Study on Smart Knowledge Sharing System with Friends)

  • 윤원범;박기남;임희석
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.279-285
    • /
    • 2013
  • 정보통신망과 컴퓨터 기술의 발전은 수많은 정보 및 지식을 생산해 내는 기반이 되었고, 최근 대중화가 가속화 되고 있는 스마트디바이스는 사용자가 원하는 정보와 지식을 쉽게 획득할 수 있는 도구로 사용되고 있다. 이에 본 논문에서는 인터넷 정보와 소셜네트워크를 활용한 스마트 디바이스 기반의 지식공유 시스템을 제안한다. 제안하는 시스템은 사용자 질의에 대해 인터넷 정보 검색, 축적된 지식 검색, 소셜네트워크 상의 지인 답변 기능으로 구성된다. 제안한 시스템의 효용성 분석을 위하여 사용자 만족도 평가를 실시하였다. 실험결과 스마트디바이스를 이용한 지식공유 시스템이 일반 정보검색엔진에 비해 통계적으로 유의미한 만족도를 나타냈다.

WiseQA를 위한 정답유형 인식 (Recognition of Answer Type for WiseQA)

  • 허정;류법모;김현기;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권7호
    • /
    • pp.283-290
    • /
    • 2015
  • 본 논문에서는 WiseQA 시스템에서 정답유형을 인식하기 위한 하이브리드 방법을 제안한다. 정답유형은 어휘정답유형과 의미정답유형으로 구분된다. 본 논문은 어휘정답유형 인식을 위해서 질문초점에 기반한 규칙모델과 순차적 레이블링에 기반한 기계학습모델을 제안한다. 의미정답유형 인식을 위해 다중클래스 분류에 기반한 기계학습모델과 어휘정답유형을 이용한 필터링 규칙을 소개한다. 어휘정답유형 인식성능은 F1-score 82.47%이고, 의미정답유형 인식성능은 정확률 77.13%이다. 어휘정답유형 인식성능은 IBM 왓슨과 비교하여, 정확률은 1.0% 저조하고, 재현율은 7.4% 높다.