최근 IoT (Internet of Things) 기술의 발전과 더불어 무선 환경에서 특정 영역에 위치하는 센서노드의 위치-센서정보를 에너지 효율적으로 수집하는 센서 네트워크 기반 공간질의처리에 대한 관심이 크게 증가하고 있다. 그리하여 센서노드에서 공간 필터링을 직접 수행하여 센서노드들 간의 통신 횟수를 감소시켜 에너지 소모를 최소화하는 다양한 공간질의처리 알고리즘 및 분산 공간색인방법들이 제안되어 왔다. 그러나 단일 공간질의처리 최적화에 중점을 두었던 기존 공간색인방법 및 알고리즘들은 IoT 환경에서 다수 사용자에 의하여 요청되는 다중 공간질의를 최적화하여 수행하기에는 한계가 있었다. 이에 본 논문에서는 센서 네트워크에서 다중 공간질의를 에너지 효율적으로 처리할 수 있는 최적화 알고리즘을 제안하고 있다. 제안된 다중 공간질의 최적화 알고리즘은 인접 영역에 주어지는 공간질의들을 통합하여 수행하는 '질의통합' 개념을 기본으로 하고 있다. 최적화 과정에서 질의들의 통합 또는 개별 수행에 대한 판단은 각 수행비용을 예측하여 결정하며, 본 논문에서는 질의처리 비용 예측 방법을 추가적으로 제안하고 있다. 끝으로, 성능평가에서는 GR-tree, SPIX, CPS의 공간색인방법에 대한 비교 실험을 통하여 제안된 알고리즘의 성능 분석결과를 제시하고 있다.
스마트폰과 같은 이동 통신 매체의 발달과 LTE, NFC, RFID 등 무선통신의 발달로 실시간으로 이동 객체의 위치데이터를 수집하여 활용하는 위치 기반의 서비스들이 다방면의 개발에 이용되고 있다. 이에 따라 대용량의 이동객체 위치 데이터들을 효율적으로 저장하는 방법과 여러 질의를 좀 더 빠르게 처리할 수 있는 방법들에 대한 연구들이 진행 중이다. 본 논문에서는 Douglas-Peucker 알고리즘을 응용하여 대용량의 이동객체궤적 데이터를 단순화하여 색인구조를 생성하고 이 색인 구조를 이용하여 최근접이웃검색 질의를 효율적으로 처리할 수 있는 알고리즘을 제안한다. 제안된 방법으로 대용량의 데이터가 더 적은 양의 데이터로 단순화 되고 얼마나 더 효율적으로 질의를 처리하는지 실험을 통하여 확인하였다.
IoT(사물인터넷) 기술의 빠른 개발로 인하여 기존의 택시들은 디스패처와 위치 시스템을 통해 서로 연결되고 있다. 일반적으로 현대의 택시들은 경로 정보를 획득하기 위한 목적으로 GPS(Global Positioning System)를 탑재하고 있다. 택시 운행 데이터들의 경로 빈도를 분석하여, 주어진 질의 시간에 해당하는 빈번한 경로를 찾을 수 있다. 그러나 위치 데이터의 용량이 매우 크고 복잡하기 때문에 택시의 운행 이벤트의 위치 데이터를 분석된 빈도 정보로 변환할 때에 확장성 문제가 발생한다. 이 문제를 해결하기 위하여, NoSQL 데이터베이스에 기반한 택시 운행 데이터에 대한 Top-K 질의 시스템을 제안한다. 첫째, 원시 택시 운행 이벤트를 분석하고 모든 경로들의 빈도 정보를 추출한다. 추출한 경로 정보는 NoSQL 문서-지향 데이터베이스인 MongoDB에 해시 기반의 인덱스 구조로 저장한다. 주로 발생하는 경로에 대한 효율적인 Top-K 질의 처리는 몽고DB의 상에서 이루어진다. 미국 뉴욕시의 실제 택시 운행 데이터를 이용한 실험을 통하여 알고리즘의 효율성을 검증하였다.
스카이라인 질의는 다차원, 대량의 데이터 검색에서 효율적인 방법이다. '지배한다'의 개념을 활용하여 약 95%이상으로 알려진 불필요한 데이터 집합을 검색 대상에서 제외하고 필요한 데이터에 집중하게 만들기 때문이다. 지금까지의 스카이라인 질의 알고리즘들은 데이터 집합이 모두 수치형 데이터일 경우에만 한정하여 개발되었다. 따라서 데이터베이스 등에 저장된 대부분의 텍스트 데이터들은 기존 스카이라인 질의 알고리즘을 사용하여 결과를 얻을 수 없었다. 본 연구는 스카이라인 질의의 대상을 범주형 데이터라는 전혀 새로운 영역을 개척한 점에서 의미가 있다. 우선 범주형 데이터 거리를 2종류를 개발하고 이를 스카이라인 질의에 적용하였고, 실험에서는 ACM의 실제 논문데이터를 사용하여 처리시간 및 정확도 비율 등에서 그 효과성을 입증하였다.
Journal of Information Science Theory and Practice
/
제2권1호
/
pp.6-21
/
2014
This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.
디지털 미디어의 증가로 비디오 클립을 효율적으로 정합하기 위한 다양한 알고리즘이 제안되었다. 기존의 비디오 검색 알고리즘에서는 주로 프레임 단위의 질의에 관한 검색 알고리즘이 연구되었으나 비디오 클립 단위의 질의에 관한 정합 알고리즘 연구는 미진하였다. 본 논문에서는 비디오 클립 질의에 관한 효율적인 비디오 색인과 검색 알고리즘을 제안한다. 시퀀스 정합의 정확도와 성능 향상을 위하여 연속되는 프레임의 히스토그램간의 유사도 함수로 커쉬함수를 사용하였으며 기존의 방법에 비해 높은 성능을 나타내었다. 비디오 샷들로부터 추출된 키프레임들은 샷묶음 뿐만 아니라 비디오 시퀀스 정합이나 브라우징에도 사용되며 여기서 키프레임은 이전 프레임들과 중요한 차이를 보이는 프레임을 나타낸다. 실험 영상을 이용한 실험결과 제안한 방법은 기존의 방법에 비해 적은 계산량으로 높은 정합 성능을 보였다.
데이터베이스 기반의 웹 응용을 위한 캐슁 기법이 최근 많이 연구되고 있다. 자주 제기되는 질의의 결과를 캐쉬 해두면 반복 질의를 위한 재사용은 물론 관련 질의의 처리에 이용될 수 있다. 웹 상에서 데이터 교환의 표준으로 XML이 등장한 이래 현재 웹 응용들은 네트워크 상의 원격 XML소스로부터 데이터 검색을 수행하는 경우가 많아졌는데 이의 효율적인 지원을 위해 검색 결과를 캐쉬 하는 것은 유용하다. 본 논문은 XML 질의를 관련 XML 캐쉬를 이용하여 처리하는 시스템의 구현 및 성능 평가에 관한 것이다. XML 질의로 XQuery, XPath, XQL 등과 같은 모든 XML 질의어의 핵심 요소인 경로 표현식을 대상으로 하였고, XML 캐쉬는 XML 실체뷰를 고려하였고, 캐쉬를 이용한 XML 질의 변환 알고리즘은 [13]에 제시된 것을 대상으로 하였다. [13]의 질의 변환 알고리즘을 지원하는 프로토타입 XML저장 시스템이 관계 DBMS를 이용하여 구현되어 다양한 성능 실험에 이용되었다. 구현의 주요 이슈에 대하여 자세히 기술한다. 성능 실험 결과를 통해 캐쉬를 이용한 XML질의 처리의 효율성을 확인하였고, 기존 연구와의 성능 비교도 기술하였다.
최근 자연어 처리(NLP) 기술, 특히 ChatGPT를 비롯한 거대 언어 모델(LLM)의 발전으로 특정 전문지식에 대한 질의응답(QA) 시스템의 연구개발이 활발하다. 본 논문에서는 거대언어모델과 문서검색 알고리즘을 활용하여 한국원자력연구원(KAERI)의 규정 등 다양한 문서를 이해하고 사용자의 질문에 답변하는 시스템의 동작 원리에 대해서 설명한다. 먼저, 다수의 문서를 검색과 분석이 용이하도록 전처리하고, 문서의 내용을 언어모델에서 처리할 수 있는 길이의 단락으로 나눈다. 각 단락의 내용을 임베딩 모델을 활용하여 벡터로 변환하여 데이터베이스에 저장하고, 사용자의 질문에서 추출한 벡터와 비교하여 질문의 내용과 가장 관련이 있는 내용들을 추출한다. 추출된 단락과 질문을 언어 생성 모델의 입력으로 사용하여 답변을 생성한다. 본 시스템을 내부 규정과 관련된 다양한 질문으로 테스트해본 결과 복잡한 규정에 대하여 질문의 의도를 이해하고, 사용자에게 빠르고 정확하게 답변을 제공할 수 있음을 확인하였다.
XML이 웹 상에서의 정보 표현, 통합, 교환을 위한 표준이 됨에 따라 다양한 XML 질의 언어들이 제안되었으며, World Wide Web Consortium(W3C)은 XQuery를 XML 질의 언어의 표준으로 권고하였다. XQuery는 SQL과 유사하게 중첩 질의를 허용하므로, 중첩된 XQuery 질의를 동일한 의미를 가지면서 보다 효율적으로 실행될 수 있는 질의로 변환하는 정규화 규칙들이 제안되었다. 하지만 제안된 정규화 규칙들은 제한적인 형태의 중첩 질의에만 적용되는 문제점을 가지고 있다. 특히, FLWR 표현식의 where 절에 있는 중첩을 처리할 수 없다. 본 논문에서는 SQL 질의의 정규화 규칙들을 확장하여 XQuery 질의의 정규화 규칙들을 제안한다. 제안한 정규화 규칙들은 FLWR 표현식의 모든 절에 나타나는 중첩을 처리할 수 있다. 본 논문의 주요 공헌은 다음과 같다. 첫째, 상관과 집계의 유무에 따라 XQuery 질의의 중첩 유형을 분류하고, 각 유형 별로 정규화 규칙들을 제안한다. 둘째, 중첩된 XQuery 질의에 정규화 규칙들을 적용하는 세부 알고리즘들을 제안한다.
XML이 다양한 분야에 널지 이용되면서 대용량의 XML을 효과적으로 관리하는 여러 가지 방법들이 연구되고 있다. 특히 지금가지 상업적, 기술적으로 성공적인 데이터 모델인 관계형 데이터베이스를 기반으로 한 여러 가지 방법들이 연구되고 있다. 본 논문은 관계형 DBMS를 사용하여 XML 질의어인 XQuery를 SQL로 변환하는 알고리즘인 XSTAR(XQuery to SQL Translation Algorithms on RDBMS)를 설계 및 구현한다. 본 연구의 XSTAR 알고리즘은 기본적인 XPath 뿐만 아니라 XQuery FLWOR 표현식, XQuery함수, 그리고 전문 검색(Fulltext 검색[8])과 관련된 몇몇 특수한 기능을 효율적으로 지원할 수 있으며, 질의의 결과 값을 XML 형태로 재생성하여 사용자에게 반환한다. 본 논문에서 제안하는 XSTAR 알고리즘은 현재 웹 상에서 공개적으로 시범 운용되고 있는 XML 문서의 관리 및 질의 처리 시스템인 XPERT(XML Query Processing Engine using Relational Technologies, http://dblab.kmu.ac.kr/project.jsp")의 질의 처리 엔진으로 사용되고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.