• Title/Summary/Keyword: query classification method

Search Result 64, Processing Time 0.024 seconds

Small Marker Detection with Attention Model in Robotic Applications (로봇시스템에서 작은 마커 인식을 하기 위한 사물 감지 어텐션 모델)

  • Kim, Minjae;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.

A Study on Robust Speech Emotion Feature Extraction Under the Mobile Communication Environment (이동통신 환경에서 강인한 음성 감성특징 추출에 대한 연구)

  • Cho Youn-Ho;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.269-276
    • /
    • 2006
  • In this paper, we propose an emotion recognition system that can discriminate human emotional state into neutral or anger from the speech captured by a cellular-phone in real time. In general. the speech through the mobile network contains environment noise and network noise, thus it can causes serious System performance degradation due to the distortion in emotional features of the query speech. In order to minimize the effect of these noise and so improve the system performance, we adopt a simple MA (Moving Average) filter which has relatively simple structure and low computational complexity, to alleviate the distortion in the emotional feature vector. Then a SFS (Sequential Forward Selection) feature optimization method is implemented to further improve and stabilize the system performance. Two pattern recognition method such as k-NN and SVM is compared for emotional state classification. The experimental results indicate that the proposed method provides very stable and successful emotional classification performance such as 86.5%. so that it will be very useful in application areas such as customer call-center.

Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier (Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색)

  • Son, Jung Eun;Ko, Byoung Chul;Nam, Jae Yeal
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This paper presents novel OCS-LBP (Oriented Center Symmetric Local Binary Patterns) based on orientation of pixel gradient and image retrieval system based on BoF (Bag-of-Feature) and random forest classifier. Feature vectors extracted from training data are clustered into code book and each feature is transformed new BoF feature using code book. BoF features are applied to random forest for training and random forest having N classes is constructed by combining several decision trees. For testing, the same OCS-LBP feature is extracted from a query image and BoF is applied to trained random forest classifier. In contrast to conventional retrieval system, query image selects similar K-nearest neighbor (K-NN) classes after random forest is performed. Then, Top K similar images are retrieved from database images that are only labeled K-NN classes. Compared with other retrieval algorithms, the proposed method shows both fast processing time and improved retrieval performance.

Integration of Extended IFC-BIM and Ontology for Information Management of Bridge Inspection (확장 IFC-BIM 기반 정보모델과 온톨로지를 활용한 교량 점검데이터 관리방법)

  • Erdene, Khuvilai;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.411-417
    • /
    • 2020
  • To utilize building information modeling (BIM) technology at the bridge maintenance stage, it is necessary to integrate large quantities of bridge inspection and model data for object-oriented information management. This research aims to establish the benefits of utilizing the extended industry foundation class (IFC)-BIM and ontology for bridge inspection information management. The IFC entities were extended to represent the bridge objects, and a method of generating the extended IFC-based information model was proposed. The bridge inspection ontology was also developed by extraction and classification of inspection concepts from the AASHTO standard. The classified concepts and their relationships were mapped to the ontology based on the semantic triples approach. Finally, the extended IFC-based BIM model was integrated with the ontology for bridge inspection data management. The effectiveness of the proposed framework for bridge inspection information management by integration of the extended IFC-BIM and ontology was tested and verified by extracting bridge inspection data via the SPARQL query.

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Natural Language Processing Model for Data Visualization Interaction in Chatbot Environment (챗봇 환경에서 데이터 시각화 인터랙션을 위한 자연어처리 모델)

  • Oh, Sang Heon;Hur, Su Jin;Kim, Sung-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.281-290
    • /
    • 2020
  • With the spread of smartphones, services that want to use personalized data are increasing. In particular, healthcare-related services deal with a variety of data, and data visualization techniques are used to effectively show this. As data visualization techniques are used, interactions in visualization are also naturally emphasized. In the PC environment, since the interaction for data visualization is performed with a mouse, various filtering for data is provided. On the other hand, in the case of interaction in a mobile environment, the screen size is small and it is difficult to recognize whether or not the interaction is possible, so that only limited visualization provided by the app can be provided through a button touch method. In order to overcome the limitation of interaction in such a mobile environment, we intend to enable data visualization interactions through conversations with chatbots so that users can check individual data through various visualizations. To do this, it is necessary to convert the user's query into a query and retrieve the result data through the converted query in the database that is storing data periodically. There are many studies currently being done to convert natural language into queries, but research on converting user queries into queries based on visualization has not been done yet. Therefore, in this paper, we will focus on query generation in a situation where a data visualization technique has been determined in advance. Supported interactions are filtering on task x-axis values and comparison between two groups. The test scenario utilized data on the number of steps, and filtering for the x-axis period was shown as a bar graph, and a comparison between the two groups was shown as a line graph. In order to develop a natural language processing model that can receive requested information through visualization, about 15,800 training data were collected through a survey of 1,000 people. As a result of algorithm development and performance evaluation, about 89% accuracy in classification model and 99% accuracy in query generation model was obtained.

Clustering Character Tendencies found in the User Log of a Story Database Service and Analysis of Character Types (스토리 검색 서비스의 사용자 기록에 나타난 인물 성향 군집화 및 유형 분석)

  • Kim, Myoung-Jun
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2016
  • is a service providing story synopses that match user's query. This paper presents a classification of character types by clustering of character tendencies found in the user log of . We also present a visualization method of showing genre-action relationships to each character type, and investigate the genre-action relationships of the major character types. We found that a small number of character types can represent more than half of the character tendencies and the character types tend to have a relationship to particular genres and actions. According to this properties, it would be desirable to provide supports for creative writing classified by character types.

Study on Methods for Sasang Constituion Diagnosis (사상체질진단 방법론 연구)

  • Kim Jon-Won;Lee Eui-Ju;Kim Kyn-Kon;Kim Jong-Yeol;Lee Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1471-1474
    • /
    • 2005
  • Sasang constitution medicine is to do different treatment accordining to sasang constitution. Therefore, the constitution diagnosis in the Sasang constitution medicine is very important thing. The Process of Sasang constitution diagnosis Is difficult thing, because of consuming much time, making every effort. It is apt to be subjective tendency. So it need to make objective method. The QSCC II (Questionnaire of Sasang Constitution Classification II ) have several problems- can't do diagnosis of Taeyangin, the accuracy rate of Sasang constitution diagnosis is not high (probably 60%), and so on. So, we need the new methods for the Sasang constitution Diagnosis. We will modify the problems of QSCC II. The First is the problems of the study execution process, not-multicenter study, a low data, the absent of Taeyangin cases. So, we have to do the multicenter study. The Second is the problems of a query and the method of statistics analysis. We will modify the problems of self-report Questionnaire. That is the problems of self-report Questionnaire, the lack of objective estimation( body type, personal appearance, etc), the absent of the estimation on typical or non-typical type constitution. We modified the problems of QSCC II. Therefore we made the new self-report Questionnaire for patients. We modified the problems of self-report Questionnaire. Therefore we made the new Constituion diagnosis Questionnaire for doctors. We develop the Questionnaire of two ways for the Sasang constitution Diagnosis. The one is the new self-report Questionnaire for patients. The other is the new Constitution diagnosis Questionnaire for doctors. We have to melt down the Questionnaire of two ways for the Sasang constitution Diagnosis.

An XML-QL to SQL Translator for Processing XML Data (XML 데이타 처리를 위한 XML-QL to SQL 번역기)

  • Jang, Gyeong-Ja;Lee, Gi-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • XML has been proposed as an international standard for organizing and exchanging a great diversity of the Web data. It is important to retrieve components of stored XML documents that are needed by a wide variety of applications. In this paper, we suggest a method to store XML documents and to retrieve an XML data. In other words, we suggest the method of retrieving XML data is using XML -QL. So we need to mapping XML-QL to SQL translator on top of an RDBMS. The contributions of this paper include, besides the detailed design and implementation of the translator, demonstration of feasibility of such a translator, and a comprehensive classification of XML queries and their mappings to SQL relational queries.

Analysis of Nonlinear CA Using CLT (CLT를 활용한 비선형 CA의 분석)

  • Kwon, Min-jeong;Cho, Sung-jin;Kim, Han-doo;Choi, Un-sook;Lee, Kue-jin;Kong, Gil-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2968-2974
    • /
    • 2015
  • Method for finding the attractors is the important object to investigate in the linear/additive CA because it is a primary interest in applications like pattern recognition, pattern classification, design of associative memory and query processing etc. But the research has been so far mostly concentrated around linear/additive CA and it is not enough to modelize the complex real life problem. So nonlinear CA is demanded to devise effective models of the problem and solutions around CA model. In this paper we introduce CLT as an upgraded version of RMT and provide the process for finding the attractors and nonreachable states effectively through the CLT.