DOI QR코드

DOI QR Code

Integration of Extended IFC-BIM and Ontology for Information Management of Bridge Inspection

확장 IFC-BIM 기반 정보모델과 온톨로지를 활용한 교량 점검데이터 관리방법

  • Erdene, Khuvilai (Department of Civil & Environmental Engineering, Yonsei Univ.) ;
  • Kwon, Tae Ho (Department of Civil & Environmental Engineering, Yonsei Univ.) ;
  • Lee, Sang-Ho (Department of Civil & Environmental Engineering, Yonsei Univ.)
  • Received : 2020.09.29
  • Accepted : 2020.10.13
  • Published : 2020.12.31

Abstract

To utilize building information modeling (BIM) technology at the bridge maintenance stage, it is necessary to integrate large quantities of bridge inspection and model data for object-oriented information management. This research aims to establish the benefits of utilizing the extended industry foundation class (IFC)-BIM and ontology for bridge inspection information management. The IFC entities were extended to represent the bridge objects, and a method of generating the extended IFC-based information model was proposed. The bridge inspection ontology was also developed by extraction and classification of inspection concepts from the AASHTO standard. The classified concepts and their relationships were mapped to the ontology based on the semantic triples approach. Finally, the extended IFC-based BIM model was integrated with the ontology for bridge inspection data management. The effectiveness of the proposed framework for bridge inspection information management by integration of the extended IFC-BIM and ontology was tested and verified by extracting bridge inspection data via the SPARQL query.

Building Information Modeling(BIM)기술을 유지관리 단계에서 활용하기 위해서는 상당량의 유지관리 데이터와 BIM기반 정보모델 객체들이 연계되어 운용되어야 한다. 본 연구에서는 교량 점검데이터를 표현하기 위해 확장된 IFC기반의 BIM모델과 온톨로지를 연계하여 정보를 관리하는 방법을 제시하였다. 이를 위해 현재의 IFC버전은 교량 객체를 제대로 표현할 수 없기 때문에 교량을 위한 IFC엔티티를 확장하였으며, 확장된 IFC기반의 정보모델을 생성하는 방법을 제시하였다. 또한, 교량 점검데이터에 대한 기본 개념을 추출하고, 교량 점검데이터를 위한 온톨로지(Ontology)를 생성하였다. 추출된 기본 개념들은 제시된 온톨로지에서 시멘틱 웹의 트리플(Triple) 방식으로 관계를 형성되었다. 마지막으로, 생성된 IFC기반의 BIM모델은 제시된 온톨로지와의 통합을 위하여 시멘틱 데이터 형식으로 변환되었다. 확장된 IFC기반 BIM모델은 제시된 교량 점검데이터 관리를 위한 온톨로지와 통합되었고, 실제 교량 점검데이터를 기반으로 테스트모델을 생성하였다. SPARQL query를 통해 목적에 맞는 교량 점검데이터가 추출됨을 확인하여 실효성을 검증하였다.

Keywords

References

  1. AASHTO (2013) AASHTO Manual for Bridge Element Inspection, American Association of State Highway and Transportation Officials, Washington, D.C.
  2. Autodesk (2020) Autodesk Revit 2020. https://help.autodesk.com/view/RVT/2020/EN (accessed Sep., 28, 2020).
  3. buildingSMART International (bSI) (2020) bSI UML Model Report: Harmonised UML Report - Part 1, IR-CS-WP2, buildingSMART International, p.70.
  4. China Railway BIM Alliance (CRBIM) (2015) Railway bIM data standard version 1.0, China Railway BIM Alliance, p.218.
  5. Gruber, T. (1993) What is an ontology? http://www-ksl.stanford.edu/kst/what-is-an-ontology.html (accessed Sep., 28, 2020).
  6. ISO-TC184/SC4 (2013) ISO 16739:2013 Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries.
  7. Kwon, T.H., Park, S.I., Jang, Y.H., Lee, S.-H. (2020) Design of Railway Track Model with Three-Dimensional Alignment based on Extended Industry Foundation Classes, Appl. Sci., 10(10), p.3649. https://doi.org/10.3390/app10103649
  8. Lee, S.-H., Park, S.I., Kwon, T.H., Seo, K.-W. (2017) Civil Infrastructure Information Modeling Method based on Extended IFC Entities using BIM Authoring Software, J. Comput. Struct. Eng. Inst. Korea, 30(1), pp.77-86. https://doi.org/10.7734/COSEIK.2017.30.1.77
  9. Lee, S.-H., Park, S.I., Park, J. (2016) Development of an IFC-based Data Schema for the Design Information Representation of the NATM Tunnel, KSCE J. Civil Eng., 20(6), pp.2112-2123. https://doi.org/10.1007/s12205-015-0123-8
  10. Musen, M.A. (2015) The Protege Project: A Look Back and a Look Forward, AI Matters, 1(4), pp.4-12. https://doi.org/10.1145/2757001.2757003
  11. NIST (2004) Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry, (NIST) GCR 04-867, National Institute of Standards and Technology, MD. USA, p.210.
  12. Noy, N.F., McGuinness, D.L. (2001) Ontology Development 101: A Guide to Creating Your First Ontology, KSL-01-05, Knowledge Systems, AI Laboratory of Stanford University, CA, USA, p.25.
  13. Park, S.I., Lee, S.-H., Almasi, A., Song, J.H. (2020) Extended IFC-based Strong Form Meshfree Collocation Analysis of a Bridge Structure, Automation in Construction, 119, 103364. https://doi.org/10.1016/j.autcon.2020.103364
  14. Pauwels, P., Terkaj, W. (2016) EXPRESS to OWL for Construction Industry: Towards a Recommendable and Usable ifcOWL Ontology, Automation in Construction, 63, pp.100-133. https://doi.org/10.1016/j.autcon.2015.12.003
  15. The World Wide Web Consortium (W3C) (2014) RDF 1.1 Primer, https://www.w3.org/TR/rdf11-primer/ (accessed Sep., 28, 2020).