• Title/Summary/Keyword: query

Search Result 3,243, Processing Time 0.028 seconds

A Study on the Intellectual Structure of Metadata Research by Using Co-word Analysis (동시출현단어 분석에 기반한 메타데이터 분야의 지적구조에 관한 연구)

  • Choi, Ye-Jin;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.63-83
    • /
    • 2016
  • As the usage of information resources produced in various media and forms has been increased, the importance of metadata as a tool of information organization to describe the information resources becomes increasingly crucial. The purposes of this study are to analyze and to demonstrate the intellectual structure in the field of metadata through co-word analysis. The data set was collected from the journals which were registered in the Core collection of Web of Science citation database during the period from January 1, 1998 to July 8, 2016. Among them, the bibliographic data from 727 journals was collected using Topic category search with the query word 'metadata'. From 727 journal articles, 410 journals with author keywords were selected and after data preprocessing, 1,137 author keywords were extracted. Finally, a total of 37 final keywords which had more than 6 frequency were selected for analysis. In order to demonstrate the intellectual structure of metadata field, network analysis was conducted. As a result, 2 domains and 9 clusters were derived, and intellectual relations among keywords from metadata field were visualized, and proposed keywords with high global centrality and local centrality. Six clusters from cluster analysis were shown in the map of multidimensional scaling, and the knowledge structure was proposed based on the correlations among each keywords. The results of this study are expected to help to understand the intellectual structure of metadata field through visualization and to guide directions in new approaches of metadata related studies.

A Study on the Implementation of Indoor Topology Using Image Data (영상 데이터를 활용한 실내 토폴로지 구현에 관한 연구)

  • Kim, Munsu;Kang, Hye-Young;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.329-338
    • /
    • 2016
  • As the need of indoor spatial information has grown, many applications have been developed. Nevertheless, the major representations of indoor spatial information are on the 2D or 3D, recently, the service based on omni-directional image has increased. Current service based on omni-directional image is used just for viewer. To provide various applications which can serve the identifying the attribute of indoor space, query based services and so on, topological data which can define the spatial relationships between spaces is required. For developing diverse applications based on omni-directional image, this study proposes the method to generate IndoorGML data which is the international standard of indoor topological data model. The proposed method is consist of 3 step to generate IndoorGML data; 1) Analysis the core elements to adopt IndoorGML concept to image, 2) Propose the method to identify the element of ‘Space’ which is the core element of IndoorGML concept, 3) Define the connectivity of indoor spaces. The proposed method is implemented at the 6-floor of 21centurybuilding of the University of Seoul to generate IndoorGML data and the demo service is implemented based on the generated data. This study has the significance to propose a method to generate the indoor topological data for the indoor spatial information services based on the IndoorGML.

Improving the Retrieval Effectiveness by Incorporating Word Sense Disambiguation Process (정보검색 성능 향상을 위한 단어 중의성 해소 모형에 관한 연구)

  • Chung, Young-Mee;Lee, Yong-Gu
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.2 s.56
    • /
    • pp.125-145
    • /
    • 2005
  • This paper presents a semantic vector space retrieval model incorporating a word sense disambiguation algorithm in an attempt to improve retrieval effectiveness. Nine Korean homonyms are selected for the sense disambiguation and retrieval experiments. The total of approximately 120,000 news articles comprise the raw test collection and 18 queries including homonyms as query words are used for the retrieval experiments. A Naive Bayes classifier and EM algorithm representing supervised and unsupervised learning algorithms respectively are used for the disambiguation process. The Naive Bayes classifier achieved $92\%$ disambiguation accuracy. while the clustering performance of the EM algorithm is $67\%$ on the average. The retrieval effectiveness of the semantic vector space model incorporating the Naive Bayes classifier showed $39.6\%$ precision achieving about $7.4\%$ improvement. However, the retrieval effectiveness of the EM algorithm-based semantic retrieval is $3\%$ lower than the baseline retrieval without disambiguation. It is worth noting that the performances of disambiguation and retrieval depend on the distribution patterns of homonyms to be disambiguated as well as the characteristics of queries.

A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia (위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법)

  • Lee, Hokyung;An, Jaehyun;Yoon, Jeongmin;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.813-821
    • /
    • 2017
  • Entity Linking find the meaning of an entity mention, which indicate the entity using different expressions, in a user's query by linking the entity mention and the entity in the knowledge base. This task has four challenges, including the difficult knowledge base construction problem, multiple presentation of the entity mention, ambiguity of entity linking, and NIL entity recognition. In this paper, we first construct the entity name dictionary based on Wikipedia to build a knowledge base and solve the multiple presentation problem. We then propose various methods for NIL entity recognition and solve the ambiguity of entity linking by training the support vector machine based on several features, including the similarity of the context, semantic relevance, clue word score, named entity type similarity of the mansion, entity name matching score, and object popularity score. We sequentially use the proposed two methods based on the constructed knowledge base, to obtain the good performance in the entity linking. In the result of the experiment, our system achieved 83.66% and 90.81% F1 score, which is the performance of the NIL entity recognition to solve the ambiguity of the entity linking.

A Data Model for an Object-based Faceted Thesaurus System Supporting Multiple Dimensions of View in a Visualized Environment (시각화된 환경에서 다차원 관점을 지원하는 객체기반 패싯 시소러스 관리 시스템 모델의 정형화 및 구현)

  • Kim, Won-Jung;Yang, Jae-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.828-847
    • /
    • 2007
  • In this paper we propose a formal data model of an object-based thesaurus system supporting multi-dimensional facets. According to facets reflecting on respective user perspectives, it supports systematic construction, browsing, navigating and referencing of thesauri. Unlike other faceted thesaurus systems, it systematically manages its complexity by appropriately ing sophisticated conceptual structure through visualized browsing and navigation as well as construction. The browsing and navigation is performed by dynamically generating multi-dimensional virtual thesaurus hierarchies called "faceted thesaurus hierarchies." The hierarchies are automatically constructed by combining facets, each representing a dimension of view. Such automatic construction may make it possible the flexible extension of thesauri for they can be easily upgraded by pure insertion or deletion of facets. With a well defined set of self-referential queries, the thesauri can also be effectively referenced from multiple view points since they are structured by appropriately interpreting the semantics of instances based on facets. In this paper, we first formalize the underlying model and then implement its prototype to demonstrate its feasibility.

An Exploratory Study of Image Retrieval Using Aesthetic Impressions (심미적 인상을 이용한 이미지 검색에 관한 실험적 연구)

  • Yu, So-Young;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.187-208
    • /
    • 2004
  • In this study, aesthetic impressions were used for a high-level feature of image retrieval. The term, 'aesthetic' has been studied in psychology, art, and literature. It means unconscious, instantaneous parts of visual perception and emotion. The literatures related to aesthetic impressions were reviewed and four kinds of aesthetic impressions were defined operationally : strong impression, soft impression, courteous impression, and refined impression. 66 image files of paintings were sampled randomly from 1100 paintings and low-level color features were extracted from them by a using perceptual color model(Lai, & Tait, 1998). The high-level features of an image, that is, four kinds of aesthetic impressions of each painting were measured by 4 subjects and averaged. In CBIR, 2 subjects performed image retrievals using example queries. They were asked to retrieve images by using the aesthetic impressions or the keywords. In evaluations, subjects showed that they were satisfied with the aesthetic impression-based image retrieval system on the average. And R-precision of the image retrieval with both color features and aesthetic impressions was higher than that of the image retrieval with color features only. But further studies with larger test collections and query sets should be followed for generalization of the result of this study.

The Effect of Deal-Proneness in the Searching Pattern on the Purchase Probability of Customer in Online Travel Services (소비자 키워드광고 탐색패턴에 나타난 촉진지향성이 온라인 여행상품 구매확률에 미치는 영향)

  • Kim, Hyun Gyo;Lee, Dong Il
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.1
    • /
    • pp.29-48
    • /
    • 2014
  • The recent keyword advertising does not reflect the individual customer searching pattern because it is focused on each keyword at the aggregate level. The purpose of this research is to observe processes of customer searching patterns. To be specific, individual deal-proneness is mainly concerned. This study incorporates location as a control variable. This paper examines the relationship between customers' searching patterns and probability of purchase. A customer searching session, which is the collection of sequence of keyword queries, is utilized as the unit of analysis. The degree of deal-proneness is measured using customer behavior which is revealed by customer searching keywords in the session. Deal-proneness measuring function calculates the discount of deal prone keyword leverage in accordance with customer searching order. Location searching specificity function is also calculated by the same logic. The analyzed data is narrowed down to the customer query session which has more than two keyword queries. The number of the data is 218,305 by session, which is derived from Internet advertising agency's (COMAS) advertisement managing data and the travel business advertisement revenue data from advertiser's. As a research result, there are three types of the deal-prone customer. At first, there is an unconditional active deal-proneness customer. It is the customer who has lower deal-proneness which means that he/she utilizes deal-prone keywords in the last phase. He/she starts searching a keyword like general ones and then finally purchased appropriate products by utilizing deal-prone keywords in the last time. Those two types of customers have the similar rates of purchase. However, the last type of the customer has middle deal-proneness; who utilizes deal-prone keywords in the middle of the process. This type of a customer closely gets into the information by employing deal-prone keywords but he/she could not find out appropriate alternative then would modify other keywords to look for other alternatives. That is the reason why the purchase probability in this case would be decreased Also, this research confirmed that there is a loyalty effect using location searching specificity. The customer who has higher trip loyalty for specificity location responds to selected promotion rather than general promotion. So, this customer has a lower probability to purchase.

Semantic Dependency Link Topic Model for Biomedical Acronym Disambiguation (의미적 의존 링크 토픽 모델을 이용한 생물학 약어 중의성 해소)

  • Kim, Seonho;Yoon, Juntae;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.652-665
    • /
    • 2014
  • Many important terminologies in biomedical text are expressed as abbreviations or acronyms. We newly suggest a semantic link topic model based on the concepts of topic and dependency link to disambiguate biomedical abbreviations and cluster long form variants of abbreviations which refer to the same senses. This model is a generative model inspired by the latent Dirichlet allocation (LDA) topic model, in which each document is viewed as a mixture of topics, with each topic characterized by a distribution over words. Thus, words of a document are generated from a hidden topic structure of a document and the topic structure is inferred from observable word sequences of document collections. In this study, we allow two distinct word generation to incorporate semantic dependencies between words, particularly between expansions (long forms) of abbreviations and their sentential co-occurring words. Besides topic information, the semantic dependency between words is defined as a link and a new random parameter for the link presence is assigned to each word. As a result, the most probable expansions with respect to abbreviations of a given abstract are decided by word-topic distribution, document-topic distribution, and word-link distribution estimated from document collection though the semantic dependency link topic model. The abstracts retrieved from the MEDLINE Entrez interface by the query relating 22 abbreviations and their 186 expansions were used as a data set. The link topic model correctly predicted expansions of abbreviations with the accuracy of 98.30%.

Integration of Ontology Open-World and Rule Closed-World Reasoning (온톨로지 Open World 추론과 규칙 Closed World 추론의 통합)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.282-296
    • /
    • 2010
  • OWL is an ontology language for the Semantic Web, and suited to modelling the knowledge of a specific domain in the real-world. Ontology also can infer new implicit knowledge from the explicit knowledge. However, the modeled knowledge cannot be complete as the whole of the common-sense of the human cannot be represented totally. Ontology do not concern handling nonmonotonic reasoning to detect incomplete modeling such as the integrity constraints and exceptions. A default rule can handle the exception about a specific class in ontology. Integrity constraint can be clear that restrictions on class define which and how many relationships the instances of that class must hold. In this paper, we propose a practical reasoning system for open and closed-world reasoning that supports a novel hybrid integration of ontology based on open world assumption (OWA) and non-monotonic rule based on closed-world assumption (CWA). The system utilizes a method to solve the problem which occurs when dealing with the incomplete knowledge under the OWA. The method uses the answer set programming (ASP) to find a solution. ASP is a logic-program, which can be seen as the computational embodiment of non-monotonic reasoning, and enables a query based on CWA to knowledge base (KB) of description logic. Our system not only finds practical cases from examples by the Protege, which require non-monotonic reasoning, but also estimates novel reasoning results for the cases based on KB which realizes a transparent integration of rules and ontologies supported by some well-known projects.

Design and Development of Middleware for Clinical Trial System based on Brain MR Image (뇌 MR 영상기반 임상연구 시스템을 위한 미들웨어 설계 및 개발)

  • Jeon, Woong-Gi;Park, Kyoung-Jong;Lee, Young-Seung;Choi, Hyun-Ju;Jeong, Sang-Wook;Kim, Dong-Eog;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.805-813
    • /
    • 2012
  • In this paper, we have designed and developed a middleware for an effectively approaching database to the existed brain disease clinical research system. The brain disease clinical research system was consisted of two parts i.e., a register and an analyzer. Since the register collects the registration data the analyzer yields a statistical data which based on the diverse variables. The middleware has designed to database management and a large data query processing of clients. By separating the function of each feature as a module, the module which was weakened connectivity between functionalities has been implemented the re-use module. And image data module used a new compression method from image to text for an effective management and storage in database. We tested the middleware system using 700 actual clinical medical data. As a result, the total data transmission time was improved maximum 115 times faster than the existing one. Through the improved module structures, it is possible to provide a robust and reliable system operation and enhanced security functionality. In the future, these middleware importances should be increased to the large medical database constructions.