• Title/Summary/Keyword: quercetin 7-O-glucoside

Search Result 46, Processing Time 0.024 seconds

Antioxidative Activity and Component Analysis of Prunella vulgaris L. Extract/Fractions (하고초 추출물의 항산화 활성 및 성분 분석)

  • Suh, Ji Young;Seong, Joon Seob;Yun, Mid Eum;Lee, Ye Seul;Ha, Ji Hoon;Park, Dong Soon;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.647-657
    • /
    • 2016
  • In this study, the antioxidative effects and active component analysis of 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from Prunella vulgaris L. were investigated. The free radical scavenging activities ($FSC_{50}$) was investigated at 50% ethanol extract ($15.25{\mu}g/mL$), ethyl acetate fraction ($8.68{\mu}g/mL$), and aglycone fraction ($8.25{\mu}g/mL$) respectively. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was investigated at 50% ethanol extract ($4.68{\mu}g/mL$), ethyl acetate fraction ($1.00{\mu}g/mL$), and aglycone fraction($1.02{\mu}g/mL$) respectively. In the cellular protective effect against $^1O_2$ induced cellular damage of human erythrocytes, extract/fractions of P. vulgaris L. were increased in a concentration dependent manner($1{\sim}25{\mu}g/mL$). Especially, ${\tau}_{50}$ of aglycone fraction at concentrations of $25{\mu}g/mL$ showed the most protective effects at 337.9 min. It's showed nine times higher (+)-${\alpha}$-tocopherol (${\tau}_{50}=38.7min$) as typical antioxidant in the $^1O_2$-induced photohemolysis of human erythrocytes. TLC and HPLC were used to analyse active components in the ethyl acetate fraction and aglycone fraction of P. vulgaris L. In ethyl acetate fraction, caffeic acid, rosmarinic acid, quercetin 3-${\beta}$-D-glucoside, rutin, kaempferol-3-O-rutinoside, astragalin (kaempferol-3-O-glucoside) were identified. In aglycone fraction, caffeic acid, rosmarinic acid, quercetin, kaempferol were identified. These results indicated that extract/fraction of P. vulgaris L. is may be used in cosmetics industry as natural antioxidants by quenching and/or scavenging $^1O_2$ and other ROS, and protecting cellular membranes.

Flavonoid Glycosides from Needles of Taxus cuspidata(Taxaceae) (주목 잎의 후라보노이드 배당체)

  • Ham, Yeon-Ho;Park, Wan-Geun;Han, Sang-Sup;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.45-51
    • /
    • 1997
  • 주목 잎을 채취하여 건조하고 아세톤-물 (7 : 3, v/v) 의 혼합액으로 추출한 후 에틸아세테이트 및 수용성 부분으로 분리하고 Sephadex-LH 20으로 충진한 칼럼을 이용하여 2개의 flavan 단량체와 2개의 후라보노이드 배당체를 단리하였다. 에틸아세테이트용성 추출물은 대부분 (+)-catechin 과 (-)-epicatechin으로 구성되어 있었으며 수용성 부분에서는 quercetin-3-0-arabinopyranosyl-($1"'{\rightarrow}6"$)-${\beta}$-D-glucoside와 quercetin-3-O-rutinoside 인 두 개의 탄수화물로 구성된 배당체를 분리하였으며 주목에서는 이들 화합물은 아직 보고된 바가 없다. 이들의 구조결정을 위하여 박층크로마토그래피를 실시하고 $^1H$-NMR과 $^{13}C$-NMR 스펙트럼을 기존의 스펙트럼과 비교, 분석하여 정확한 구조를 규명하였다.

  • PDF

Phytochemical Constituents of Bistorta manshuriensis

  • Chang, Sang-Wook;Kim, Ki-Hyun;Lee, Il-Kyun;Choi, Sang-Un;Ryu, Shi-Yong;Lee, Kang-Ro
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.234-240
    • /
    • 2009
  • Phytochemical investigation of the MeOH extract of the aerial parts of Bistorta manshuriensis resulted in the isolation of two cerebrosides, two lactams, six phenolic compounds and seven flavonoids. Their chemical structures were characterized by spectroscopic methods to be pinelloside (1), soyacerebroside I (2), pterolactam (3), 5-hydroxypyrrolidine-2-one (4), vanillic acid (5), caffeic acid methyl ester (6), protocatechuic acid (7), caffeic acid (8), 3,5-di-O-caffeoyl quinic acid methyl ester (9), chlorogenic acid methyl ester (10), avicularin (11), afzelin (12), quercetin (13), isoorientin (14), quercetin 3-O-${\beta}$-D-glucoside (15), quercitrin (16), and luteolin (17). The isolated compounds (1 - 4, 7, 12, 14) were isolated for the first time from this plant source and the compounds 1 - 4, 9 and 10 were first reported from the genus Bistorta. Compound 17 exhibited moderate cytotoxicity and compound 6 exhibited weak cytotoxicity against four human cancer cell lines in vitro using an SRB bioassay.

Antioxidant Caffeic acid Derivatives from Leaves of Parthenocissus tricuspidata

  • Saleem, Muhammad;Kim, Hyoung-Ja;Jin, Changbae;Lee, Yong-Sup
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.300-304
    • /
    • 2004
  • Five caffeic acid derivatives; methyl ester of caffeoylglycolic acid (1), dimethyl ester of caffeoyltartaric acid (2), dimethyl ester of caffeoyltartronic acid (3), monomethyl ester of caffeoyltartronic acid (4), methyl ester of caffeic acid (5), and some other secondary metabolites including; quercetin, quercetin 3-O-$\beta$-D-glucuronide methyl ester, kaempferol, 3,5,7,4'-O-tetramethylkaempferol, $\beta$-sitosterol glucoside, 2$\alpha$-hydroxyursolic acid and 2,24-dihydroxyursolic acid, have been isolated and characterized. All the isolated compounds were characterized with the help of NMR spectroscopy and mass spectrometry. Structure of compound 3 was also confirmed by a single X-ray crystallographic technique. Isolates were evaluated for anti-oxidant activities and most of the tested compounds were found to be potent in DPPH free radical scavenging ($IC_{50}{\;}={\;}4.56-14.17{\;}{\mu\textrm{g}}/mL$) and superoxide anion scavenging ($IC_{50}{\;}={\;}0.58-7.39{\;}{\mu\textrm{g}}/mL$) assays.

Antioxidative Activity and Component Analysis of Psidium guajava Leaf Extracts (구아바 잎 추출물의 항산화 활성과 성분 분석)

  • Yang, Hee-Jung;Kim, Eun-Hee;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.233-244
    • /
    • 2008
  • In this study, the antioxidative effects, inhibitory effects on elastase and tyrosinase, and component analysis of Psidium guajava leaf extracts were investigated. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities $(FSC_{50})$ of extract/fractions of Psidium guajava leaf were in the order: 50% ethanol extract $(7.05{\mu}g/mL)$ < ethyl acetate fraction $(3.36{\mu}g/mL)$ < deglycosylated flavonoid aglycone fraction $(3.24{\mu}g/mL)$. Reactive oxygen species (ROS) scavenging activities $(OSC_{50})$ of some Psidium guajava leaf extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The order of ROS scavenging activities were 50% ethanol extract $(OSC_{50},\;2.17{\mu}g/mL)$ < ethyl acetate fraction $(0.64{\mu}g/mL)$ < deglycosylated flavonoid aglycone fraction $(3.39{\mu}g/mL)$. Aglycone fraction showed the most prominent ROS scavenging activity. The protective effects of extract/fractions of Psidium guajava leaf on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Psidium guajava leaf extracts suppressed photohemolysis in a concentration dependent manner $(1{\sim}10{\mu}g/mL)$, particularly deglycosylated flavonoid aglycone fraction exhibited the most prominent celluar protective effect ${\tau}_{50}\;107.5min\;at\;1{\mu}g/mL)$. Aglycone fraction obtained from the deglycosylation reaction of ethyl acetate fraction among the Psidium guajava leaf extracts, showed 1 band in TLC and 1 peak in HPLC experiments (360 nm). One component was identified as quercetin. TLC chromatogram of ethyl acetate fraction of Psidium guajava leaf extract revealed 5 bands and HPLC chromatogram showed 5 peaks, which were identified as quercetin 3-O-gentobioside (10.32%) , quercetin 3-O-${\beta}$-D-glucoside (isoquercitin, 13.30%), quercetin 3-O-${\beta}$-D-galactoside (hyperin, 11.34%), quercetin 3-O-${\alpha}$-L-arabinoside (guajavarin, 19.70%), quercetin 3-O-${\beta}$-L-rhamnoside (quercitrin, 45.33%) in the order of elution time. The inhibitory effect of Psidium guajava leaf extracts on tyrosinase were investigated to assess their whitening efficacy. Finally, their anti-elastase activities were measured to predict the anti-wrinkle efficacy in the human skin. Inhibitory effects $(IC_{50})$ on tyrosinase of some Psidium guajava leaf extracts was 50% ethanol extract $(149.67{\mu}g/mL)$ < ethylacetate fraction $(30.67{\mu}g/mL)$ < deglycosylated aglycone fraction $(17.10{\mu}g/mL)$. Inhibitory effects $(IC_{50})$ on elastase of some Psidium guajava leaf extracts was 50% ethanol extract $(6.60{\mu}g/mL)$ < deglycosylated aglycone fraction $(5.66{\mu}g/mL)$ < ethylacetate fraction $(3.44{\mu}g/mL)$. These results indicate that extract/fractions of Psidium guajava leaf can function as antioxidants in bioloigcal systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. And component analysis of Psidium guajava leaf extract and inhibitory activity on elastase of the aglycone fraction could be applicable to new functional cosmetics for smoothing wrinkles.

Flavonoids analysis about mulberry fruit of Korean mulberry cultivar, 'Daeshim'

  • Ju, Wan-Taek;Kwon, O-Chul;Kim, Yong-Soon;Kim, Hyun-Bok;Sung, Gyoo-Byung;Kim, Jong-gil
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • Mulberry fruit is a new income product in Korea sericulture due to the increase of fruit consumption. However, flavonoids of Korean mulberry cultivar for fruit production did not reported yet. In this study, the typical mulberry cultivar, 'Daeshim' was analyzed using ultrahigh performance liquid chromatography coupled with diode array detection and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS) technique for flavonoids analysis. Nine flavonoids were isolated and analyzed from Daeshim using UPLC-DAD-QTOF/MS chromatogram. According to quantitative analysis, rutin (66.1 mg/100g DW) and quercetin 3-O-(6"-O-malonyl) glucoside (26.7 mg/100g DW) were abundant in mulberry fruit. Our results might be used as basic information for mulberry consumption.

Formation of Flavone Di-O-Glucosides Using a Glycosyltransferase from Bacillus cereus

  • Ahn, Byoung-Chan;Kim, Bong-Gyu;Jeon, Young-Min;Lee, Eun-Jeong;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.387-390
    • /
    • 2009
  • Microbial UDP-glycosyltransferases can convert many small lipophilic compounds into glycons using uridine-diphosphate-activated sugars. The glycosylation of flavonoids affects solubility, stability, and bioavailability. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-3, was cloned by PCR and sequenced. BcGT-3 was expressed in Escherichia coli BL21(DE3) with a glutathione S-transferase tag and purified using a glutathione S-transferase affinity column. BcGT-3 was tested for activity on several substrates including genistein, kaempferol, luteolin, naringenin, and quercetin. Flavonols were the best substrates for BcGT-3. The enzyme dominantly glycosylated the 3-hydroxyl group, but the 7-hydroxyl group was glycosylated when the 3-hydroxyl group was not available. The kaempferol reaction products were identified as kaempferol-3-O-glucoside and kaempferol-3,7-O-diglucoside. Kaempferol was the most effective substrate tested. Based on HPLC, LC/MS, and NMR analyses of the reaction products, we conclude that BcGT-3 can be used for the synthesis of kaempferol 3,7-O-diglucose.

Profiling of flavonoid glycosides in fruits and leaves of jujube (Zizyphus jujuba var. inermis (Bunge) Rehder) using UPLC-DAD-QTOF/MS (UPLC-DAD-QTOF/MS를 이용한 대추나무(Zizyphus jujuba var. inermis (Bunge) Rehder) 잎과 열매의 플라보노이드 배당체 분석)

  • Lee, Min-Ki;Kim, Heon-Woong;Kim, Young Jin;Lee, Seon-Hye;Jang, Hwan-Hee;Jung, Hyun-Ah;Kim, Sook-Bae;Lee, Sung-Hyen;Choe, Jeong-Sook;Kim, Jung-Bong
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1004-1011
    • /
    • 2016
  • Flavonoids, non-nutrient secondary metabolites of plants, are widely distributed in commonly consumed agro-food resources. Flavonoids include aglycones, and their glycosides are reported to have potential health-promoting compounds. The aim of this study was to investigate flavonoid glycosides in the fruit and leaves of Zizyphus jujuba var. inermis (Bunge) Rehder (jujube). A total of six flavonoids (five flavonols and one chalcone) were identified in jujube fruit and leaves by using ultra-performance liquid chromatography-diode array detector-quadrupole time of flight mass spectrometry along with chemical library and an internal standard. In positive ion mode, six flavonoids were linked to the C- and O-glycosides which were conjugated with sugar moieties based on kaempferol, quercetin, and phloretin aglycones. Total flavonoid contents of leaves (8,356.5 mg/100 g dry weight (DW)) was approximately 900-fold higher than that of fruit (fresh fruit, 13.6 mg/100 g dry DW; sun-dried fruits, 9.2 mg/100 g dry DW). Quercetin 3-O-rutinoside (rutin) and quercetin 3-O-robinobioside were the predominant flavonols in fruit and leaves of jujube. In particular, rutin had the highest content (6,735.2 mg/100 g DW) in leaves, and rutin is a widely reported bioactive compound. Phloretin 3',5'-di-C-glucoside (chalcone type) was detected only in leaves. The leaves of jujube contain a high content of flavonoids and the results of this study indicate that jujube leaves may be a source of bioactive flavonoids.

Cytotoxic Phenolic Constituents of Acer tegmentosum Maxim

  • Park, Ki-Myun;Yang, Min-Cheol;Lee, Kyu-Ha;Kim, Kyung-Ran;Choi, Sang-Un;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1086-1090
    • /
    • 2006
  • The chromatographic separation of the MeOH extract from the twigs of Acer tegmentosum led to the isolation of ten phenolic compounds. The structures of these compounds were determined using spectroscopic methods as 3,7,3',4'-tetramethyl-quercetin (1), 5,3'-dihydroxy-3,7,4'-trimethoxy flavone (2), 2,6-dimethoxy-p-hydroquinone (3), (-)-catechin (4), morin-3-O-${\alpha}$-L-lyxoside (5), p-hydroxy phenylethyl-O-${\beta}$-D-glucopyranoside (6), 3,5-dimethoxy-4-hydroxy phenyl-1-O-${\beta}$-D-glucoside (7), fraxin (8), 3,5-dimethoxy-benzyl alcohol 4-O-${\beta}$-D-glucopyranoside (9) and 4-(2,3-dihydroxy propyl)-2,6-dimethoxy phenyl ${\beta}$-D-glucopyranoside (10). The compounds were examined for their cytotoxic activity against five cancer cell lines. Compound 3 exhibited good cytotoxic activity against five human cancer cell lines with $ED_{50}$ values ranging from $1.32\;to\;3.85\;{\mu}M$.

Anti-inflammatory Metabolites of Agrimonia pilosa Ledeb. and Their Mechanism

  • Park, Mi Jin;Ryu, Da Hye;Cho, Jwa Yeoung;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.13-13
    • /
    • 2018
  • The anti-inflammatory (INF) compounds (1-15) were isolated from Agrimonia pilosa Ledeb. (APL) by activity-guided isolation technique. The isolated compounds (1-15) were identified as quercetin-7-O-rhanmoside (1), apigenin-7-O-glycoside (2), kaempferol-7-O-glycoside (3), apigenin-7-O-[6"-(butyl)-glycoside] (4), querceitn (5), kaempferol (6), apigenin (7), apigenin-7-O-[6"-(pentyl)-glycoside] (8), agrimonolide (9), agrimonolide-6-O-glucoside (10), desmethylagrimonolide (11), desmethylagrimonolide-6-O-glucoside (12), luteolin (13), vitexin (14) and isovitexin (15). Flavonoids, compound 2, 3, 11, and 14-15 have been found in APL for the first time. Furthermore, two novel flavone derivatives, compound 4 and 8, have been isolated inceptively in plant. In the no cytotoxicity concentration ranges of $0-20{\mu}M$, nitric oxide (NO) production level of 1-15 was estimated in LPS-treated Raw 264.7 macrophage cells. The flavone aglycones, 7 (apigenin, $IC_{50}=3.69{\pm}0.34{\mu}M$), 13 (luteolin, $IC_{50}=4.62{\pm}0.43{\mu}M$), 6 (kaempferol, $IC_{50}=14.43{\pm}0.23{\mu}M$) and 5 (quercetin, $IC_{50}=19.50{\pm}1.71{\mu}M$), exhibited excellent NO inhibitory (NOI) activity in dose-dependent manner. In the structure activity relationship (SAR) study of apigenin-derivatives (APD), apigenin; Api, apigenin-7-O-glucoside; Api-G, apignenin-7-O-[6"-(butyl)-glycoside]; Api-BG and apignenin-7-O-[6"-(pentyl)-glycoside]; Api-P, from APL on INF activity was investigated. The INF mediators level such as NO, INF-cytokines, NF-KB proteins, iNOS and COX-2 were sharply increased in Raw 264.7 cells by LPS. When pretreatment with APD in INF induced macrophages, NOI activity of Api was most effective than other APD with $IC_{50}$ values of $3.69{\pm}0.77{\mu}M$. And the NOI activity was declined in the following order: Api-BG ($IC_{50}=8.91{\pm}1.18{\mu}M$), Api-PG ($IC_{50}=13.52{\pm}0.85{\mu}M$) and API-G ($IC_{50}=17.30{\pm}0.66{\mu}M$). The NOI activity of two novel compounds, Api-PG and Api-BG were lower than their aglycone; Api, but more effective than Api-G (NOI: Api-PG and Api-BG). And their suppression ability on INF cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA showed the similar tendency. Therefore, the anti-INF mechanism study of Api-PG and Api-BG on nuclear factor-kappa B ($NF-{\kappa}B$) pathway, representative INF mechanism, was investigated and Api was used as positive control. Api-BF was more effectively prevent the than phosphorylation of $pI{\kappa}B$ kinase (p-IKK) and p65 than Api-PG in Raw 264.7 cells. In contrast, Api-PG and Api-BG were not reduced the phosphorylation of inhibitor of kappa B alpha ($I{\kappa}B{\alpha}$). Moreover, pretreatment with Api-PG and Api-BG, dose-dependently inhibited LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNAs and proteins in macrophage cells, and their expression were correlated with their NOI activity. Therefore, APL can be utilized to health promote agent associated with their AIN metabolites.

  • PDF