• Title/Summary/Keyword: quaternary fault

Search Result 79, Processing Time 0.023 seconds

A Seismic Refraction Study on the Basement near the Chonbuk Ranch in Gyeongju (탄성파 굴절법을 이용한 경주시 천북목장 부근의 기반암 분포 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.215-226
    • /
    • 2000
  • In order to map the acoustic basement and to locate fracture zones in the Galgok fault, seismic refraction data were acquired near the Chonbuk ranch in Gyeongju. Along three profiles of 72m(Line 1), 72m(Line 2), and 36m(Line 3) long, seismic signals were generated by a 5kg hammer. The refraction data were collected by employing twelve 8 Hz geophones at an interval of 3m and recording time of 192ms at a sampling rate of 0.2ms. The data are interpreted using GRM method. The top layer (Layer 1) is characterized as the velocity of approximately250 m/s and thickness of approximately 2.1m. This layer is regarded as a soil layer. Underneath Layer 1 lies unconsolidated layer (Layer 2) whose refraction velocity is determined to be $1,030{\sim}1,400m/s$. Layer 2 is approximately 4.6m thick and is regarded as a Quaternary gravel layer. The third layer (Layer 3) has the mean refraction velocity of $2,100{\sim}2,200m/s$ and is interpreted to be the acoustic basement. In some parts of Lines 1 and 3, the difference in depth to the top of Layer 2 is greater than 20 cm indicating the possibility of existence of Quaternary faults. Along Line 3 and the eastern part of Line 1, refracted energy from the acoustic basement was not recorded. This may highly indicate that a relatively large scale fault exists under the western part of Line 1.

  • PDF

Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System (가음단층계의 선형구조 추출과 선형구조와 단층활동의 관련성)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.

경주시 감산사단층 부근에서의 탄성파 굴절법 조사

  • Kim, Gi-Yeong;Kim, Dong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • In order to delineate distribution of the basement in the vicinity of a Quaternary fault outcrop near the Gamsansa temple in Gyeongju, we conducted a seismic refraction survey along a 188 m profile with a 4 m receiver interval. Through tomographic inversion, we define four layers with refraction velocities of approximately 350 m/s, 600 m/s, 1,100 m/s and 2,400 m/s, respectively. We depict a reversed fault at a location of 40 m apart from the base station of the profile and interpret a fracture zone related to fault movements in the NNW of the profile.

  • PDF

Quaternary Tectonic Movement on Cheju Island (제주도의 제4기 지구조운동)

  • Hwang, Jae Ha;Lee, Byung Joo;Song, Kyo Young
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.209-212
    • /
    • 1994
  • Cheju Island was formed by volcanic activity probably related to the inferred geodynamics in the early Quaternary times. Paleostress analysis, in spite of a few fault slip data collected near Sanbangsan trachyte dome (dated 0.87 Ma) represents an extentional tectonic event with the direction ENE-WSW. Joint anayses in the vicinity of Seahwa reveal three extensional tectonic events of directions NW-SE, NE-SW and ENE-WSW. Especially the extensional event with the direction ENE-WSW affected the whole Cheju area during the most recent time.

  • PDF

The Ages of Fault Activities of the Ilgwang Fault in Southeastern Korea, Inferred by Classification of Geomorphic Surfaces and Trench Survery (지형면 분류 및 트렌치 조사에 의한 일광단층의 단층활동시기 추정)

  • Jang, Ho;Lee, Jin-Han;An, Yun-Seong;Joo, Byeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.21-30
    • /
    • 2004
  • The Ilgwang Fault is NNE-striking, elongated 40 Km between Ulsan and Haeundae-ku, Busan in southeastern part of the Korean Peninsula. This paper si mainly concerned about the ages of the fault activities especially in the Quaternary, inferred from classification of geomorphic surfaces and trench excavation for the construction of Singori nuclear power plant. The geomorphic surfaces are classified into Beach and the Alluvial plain, the 10 m a.s.l. Marine terrace(MIS 5a), the 20 m a.s.l. Marine terrace(MIS 5e), the Reworked surface of 45 m a.s.l. Marine terrace(MIS 7 or 9) and the Low relief erosional surface. The Low relief erosional surface is distributed coastal side, the Reworked surface of 45m a.s.l. Marine terrace inland side by the Ilgwang Fault Line as the boundary line. But the former is above 10 m higher in relative height than the latter. The 20 m a.s.l. Marine terrace on the elongation line of the Ilgwang Fault reveals no dislocation. A site was trenched on the straight contact line with $N30^{\circ}E$-striking between the 10 m a.s.l. Marine terrace and the 20 m a.s.l. Marine terrace. Fault line or dislocation was not observable in the trench excavation. Accordingly, the straight contact line is inferred as the ancient shore line of the 10 m a.s.l. Marine terrace. The Ages of the Fault activities are inferred after the formation of the Ichonri formation - before the formation of the 45 m a.s.l. Marine terrace(220 Ka. y. B.P. or 320. Ka. y. B.P.). The Low relief erosional surface was an island above the sea-level during the formation of the 45 m a.s.l. marine terrace in the paleogeography.

  • PDF

The Geodynamic Evolution of the Chugaryeong Fault Valley in a View Point of Paleomagnetism (고지자기학적 관점에서 본 추가령단층곡의 생성과 진화)

  • 이윤수;민경덕;황재하
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.555-571
    • /
    • 2001
  • The dynamic evolution of the Chugaryeong fault valley is studied by paleomagnetic works on 163 samples at 16 sites from Late Cretaceous and Quaternary volcanic rocks in the valley. Conglomerate test and stepwised thermal/alternating field demagnetization indicate that all the characteristic directions are of primary origin. Paleomagnetic pole ponsition(216.8$^{\circ}$E/7l .6$^{\circ}$N; dp=7.1$^{\circ}$, dm=10.0$^{\circ}$) for the upper par of the Jijangbong Volcanic Complex Is indistinguishable from the coeval retference pole position from the Gyeongsang Basin, which further substanciates the reliability of the Paleomagnetic data. This indicates the study area has not undergone any tectonic rotation since Late Cretaceous by uy significant reactivation of the Chugaryeong fault valley. The Quaternary pole position (134.2$^{\circ}$E/86.5$^{\circ}$N; $A_{95}$=7.1 $^{\circ}$) from the Jeongog Basalt reflects the present geocentric axial dipole field for the area, supporting the above conclusion. Unlike the upper part, paleomasnelic directions of the lower part of the Jijangbong Volcanic Complex show random distrinution between sites. We interpret that the early stage of the volcanic activity was created by sinistral strike slip motion of the Chugaryeong fault during early Late Cretaceous. The creation and evolution of the Chugaryeong fault valley emphasize the significance of the kinematic FR (folding ruler) model in east Asia.

  • PDF

Coulomb stress transfer due to reverse faulting displacement field (역단층성 변위에 의한 Coulomb stress transfer)

  • Ko, Min-Suk;Chang, Chan-Dong;Lee, Jun-Bok;Shim, Taek-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.149-154
    • /
    • 2008
  • We analyzed the Coulomb stress transfer near a small-scale reverse fault. For the modeling we used the geometry of a Quaternary fault in Gyeongju area, Eupcheon fault. For an assumed reverse faulting slip of 10cm, the resulting values of the Coulomb stress change are relatively higher (>2 bar) near the edges (both downward and lateral) of the fault, and diminish slightly upward and downward. The equivalents are negative in the zone immediately below and above the fault, exhibiting a "T" shape of low stress zone in the vertical profile of the fault. This study demonstrates the possible ranges and directions the aftershock energy would propagates after a reverse faulting.

  • PDF

Near-surface geophysical studies in the Ulsan Fault Zone of Korea (한국 울산단층대에서의 천부지구물리 연구)

  • Kim, Ki-Young;Kim, Dong-Hoon;Lee, So-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2008
  • Recent earthquakes near nuclear power plants in Korea have triggered public concerns about possible seismicity of the Ulsan Fault Zone in the south-eastern part of the Korean peninsula. To reveal subsurface structures of this fault zone, we conducted high-resolution seismic refraction and reflection surveys, and closely spaced gravity measurements in the Dongchon River valley north of Ulsan, Korea. Here alluvium covers the north-south trending fault zone in a 1-km wide valley. Both source points and receivers were spaced at 5-m intervals for the 24-channel seismic refraction and reflection methods, along two profiles of 835 m and 415 m length. Gravity data were also measured along these profiles at 131 stations using a 10-m interval. Synergetic interpretation of seismic refraction, high-resolution seismic reflection, and gravity surveys across the valley indicates that the Ulsan Fault Zone was formed by apparent north-south strike-slip motions during the Cretaceous, and that some faults may have been reactivated by east-west compressional or transpressional stresses during the Tertiary or Quaternary.

The characteristics of quaternary fault and coastal terrace around Suryumri area. (수렴리 일대에 발달하는 신기단층 및 해안단구의 층서 고찰)

  • 이병주;감주용;양동윤;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.133-149
    • /
    • 2000
  • The study area which contains the coastal terrace of the southeastern part of Korean peninsula, well developed the lineaments which are NNE, NE and WNW directions. The area crops out Cretaceous sedimentary rocks and granite porphyry, Tertiary conglomerate, tuffite and basalt and Quarternary deposits. Coastal terraces are subdivided into low, middle and upper terraces(LT, MT, UT) based on the topographic levels. Terrace gravels are deposited on these wave-cut erosional surface during the initial lowering stage of sea level fluctuation. Terrace gravels are typified by granule to pebble layers with slightly inclined beddings. These gravels are interpreted as beach gravels belonging to berm or swash zone based on the present distribution of beach gravels. The Suryum fault is characterized by the thrust which is gradationally changing the strike from ENE to NNE. The extension of the fault is about 200m and Maximum displacement is about 1.5m.

  • PDF

Microstructural Observations on Quaternary ZnMgSSe/GaAs Epilayer Grown by MBE (MBE로 성장시킨 4원계 ZnMgSSe/GaAs 에피층의 미세구조 관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Park, Hae-Sung;Kim, Tae-Il
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.82-89
    • /
    • 1995
  • High resolution transmission electron microscopic observations on quaternary $Zn_{1-x}Mg_{x}S_y$ $S_{1-y}$(x=0.13, y=0.16) on (001) GaAs substrate grown up to $1.2{\mu}m$ with 20nm ZnSe buffer layer at $300^{\circ}C$ by RIBER MBE system which has a single growth chamber were investigated by HRTEM working at 300kV with point resolution of 0.18nm. The ZnSe buffer layer maintains the coherency with the GaAs substrate. The stacking faults had begun at ZnSe buffer/$Zn_{1-x}Mg_{x}S_{y}S_{1-y}$ interface, whose length and spacing became larger than 60nm and wider than 40nm, respectively. The inverse triangular stacking fault was bounded by stacking faults which were formed on {111} planes with different variants. There exists rare stacking faults inside the triangular defect. The epilayer surrounded by the straight stacking faults, which had formed in the same direction, became the columnar structure.

  • PDF