• Title/Summary/Keyword: quasistatic

Search Result 53, Processing Time 0.022 seconds

Real time compensation for quasistatic errors of a horizantal machining center (수평 머시닝 센터의 준 정적 오차의 실시간 보정)

  • Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

HEXKIN : A Quasistatic Approach to Spatial Kinetics Problems in a Hexagonal Lattice Reactor

  • Kim, Hyun-Dae;Oh, Se-Kee;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 1980
  • The quasistatic approximation is incorporated in HEXKIN, a 2-group, 2-dimensional reactor kinetics code specially developed for a hexagonal lattice-type reactor. The code allows maximum 15 delayed neutron groups, 279 lattice points, and 500 different driving functions to be able to initiate perturbation at each lattice point. Reactivity feedback due to power-dependent fuel temperature change is also involved. To check the accuracy of the code, a result of numerical experiment is compared with the measurement at the Savannah River Laboratory. The experiment was specifically designed to emphasize delayed neutron holdback. The calculated flux tilts agree with the measured flux tilts within the small uncertainty of the measurements.

  • PDF

Performance assessment of precast concrete pier cap system

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The purpose of this study was to investigate the performance of precast concrete pier cap system. The proposed precast pier cap provides an alternative to current cast-in-place systems, particularly for projects in which a reduced construction time is desired. Five large-scale pier cap specimens were constructed and tested under quasistatic monotonic loading. The computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints with a shear key. This study documents the testing of the precast concrete pier cap system under monotonic loading and presents conclusions and design recommendations based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm design details, especially for actual detailing employed in the field.

Seismic Performance Assessment of Reinforced Concrete Bridge Columns with Interlocking Circular Hoops (결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Park, Kwang-Soon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-90
    • /
    • 2011
  • The purpose of this study was to investigate the seismic performance of reinforced concrete bridge columns with interlocking circular hoops. Three interlocking columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve the existing practice in the design and construction of reinforced concrete bridge columns with interlocking circular hoops.

Performance Assessment of Hollow Precast Segmental PSC Bridge Columns (중공 프리캐스트 세그먼트 PSC 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Young-Ky;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • The purpose of this study was to investigate the performance of hollow precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. Shortened construction times, in turn, lead to important safety and economic advantages when traffic disruption or rerouting is necessary. Two hollow precast segmental PSC bridge columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Crush characteristics of the laminated composite box tubes (섬유강화 복합재료 Box Tube의 Crush거동)

  • 강수춘;전완주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.65-72
    • /
    • 1991
  • This paper presents the results of static crushing test that was conducted to characterize the energy absorption and collapse characteristics of composite box tubes. Fifteen specimens were fabricated with woven fabric prepreg using [0/90] glass/epoxy and were autoclave cured. Quasistatic compression test was performed on them. Collapse mode and energy absorption capacity vary significantly as a function of the thickness and length of a square side of composite box tube.

  • PDF

Real-Time Implementation of Medical Ultrasound Strain Imaging System (의료용 초음파 스트레인 영상 시스템의 실시간 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Bae, Moo-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

An Analysis of Axial Crushing Behavior of Energy Absorbing Aluminum Honeycomb and Design of Cell Configuration (에너지 흡수용 알루미늄 허니컴 재료의 압축거동 분석 및 설계)

  • 김중재;김상범;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.195-205
    • /
    • 2001
  • The mechanical properties of aluminum honeycomb on the direction of axial crushing under quasistatic loading test was investigated. The crushing process was simulated numerically by full-scale finite element models. Simulations reproduce the experimental results both qualitatively as well as quantitatively. From the investigation, we suggested the constitutive model of energy absorbing honeycomb structure for large scale impact analysis. Real impact test of the WB(Moving Deformable Barrier) was carried and compared with finite element simulation. Constitutive model used in the numerical simulation had a good correlation with experiment. By suggesting the optimizing method fur honeycomb cell configuration design, relationship between cell configuration and crush strength is studied.

  • PDF