• Title/Summary/Keyword: quasinormal subgroup

Search Result 8, Processing Time 1.092 seconds

FINITE GROUPS WITH SOME SEMI-p-COVER-AVOIDING OR ss-QUASINORMAL SUBGROUPS

  • Kong, Qingjun;Guo, Xiuyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.943-948
    • /
    • 2014
  • Suppose that G is a finite group and H is a subgroup of G. H is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; H is said to be semi-p-cover-avoiding in G if there is a chief series 1 = $G_0$ < $G_1$ < ${\cdots}$ < $G_t=G$ of G such that, for every i = 1, 2, ${\ldots}$, t, if $G_i/G_{i-1}$ is a p-chief factor, then H either covers or avoids $G_i/G_{i-1}$. We give the structure of a finite group G in which some subgroups of G with prime-power order are either semi-p-cover-avoiding or ss-quasinormal in G. Some known results are generalized.

Quasinormal Subgroups in Division Rings Radical over Proper Division Subrings

  • Le Qui Danh;Trinh Thanh Deo
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.187-198
    • /
    • 2023
  • The motivation for this study comes from a question posed by I.N. Herstein in the Israel Journal of Mathematics in 1978. Specifically, let D be a division ring with center F. The aim of this paper is to demonstrate that every quasinormal subgroup of the multiplicative group of D, which is radical over some proper division subring, is central if one of the following conditions holds: (i) D is weakly locally finite; (ii) F is uncountable; or (iii) D is the Mal'cev-Neumann division ring.

SUBPERMUTABLE SUBGROUPS OF SKEW LINEAR GROUPS AND UNIT GROUPS OF REAL GROUP ALGEBRAS

  • Le, Qui Danh;Nguyen, Trung Nghia;Nguyen, Kim Ngoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.225-234
    • /
    • 2021
  • Let D be a division ring and n > 1 be an integer. In this paper, it is shown that if D ≠ ��3, then every subpermutable subgroup of the general skew linear group GLn(D) is normal. By applying this result, we show that every subpermutable subgroup of the unit group (ℝG)∗ of the real group algebras RG of finite groups G is normal in (ℝG)∗.

ON MINIMAL NON-𝓠𝓝𝑺-GROUPS

  • Han, Zhangjia;Shi, Huaguo;Chen, Guiyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1063-1073
    • /
    • 2014
  • A finite group G is called a $\mathcal{QNS}$-group if every minimal subgroup X of G is either quasinormal in G or self-normalizing. In this paper the authors classify the non-$\mathcal{QNS}$-groups whose proper subgroups are all $\mathcal{QNS}$-groups.

FINITE GROUPS WHICH ARE MINIMAL WITH RESPECT TO S-QUASINORMALITY AND SELF-NORMALITY

  • Han, Zhangjia;Shi, Huaguo;Zhou, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2079-2087
    • /
    • 2013
  • An $\mathcal{SQNS}$-group G is a group in which every proper subgroup of G is either s-quasinormal or self-normalizing and a minimal non-$\mathcal{SQNS}$-group is a group which is not an $\mathcal{SQNS}$-group but all of whose proper subgroups are $\mathcal{SQNS}$-groups. In this note all the finite minimal non-$\mathcal{SQNS}$-groups are determined.

ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS

  • Guo, Wenbin;Yu, Haifeng;Zhang, Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2016
  • A chief factor H/K of G is called F-central in G provided $(H/K){\rtimes}(G/C_G(H/K)){\in}{\mathfrak{F}}$. A normal subgroup N of G is said to be ${\pi}{\mathfrak{F}}$-hypercentral in G if either N = 1 or $N{\neq}1$ and every chief factor of G below N of order divisible by at least one prime in ${\pi}$ is $\mathfrak{F}$-central in G. The symbol $Z_{{\pi}{\mathfrak{F}}}(G)$ denotes the ${\pi}{\mathfrak{F}}$-hypercentre of G, that is, the product of all the normal ${\pi}{\mathfrak{F}}$-hypercentral subgroups of G. We say that a subgroup H of G is ${\pi}{\mathfrak{F}}$-embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H{\cap}T)H_G/H_G{\leq}Z_{{\pi}{\mathfrak{F}}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of G contained in H. In this paper, we use the ${\pi}{\mathfrak{F}}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.