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Abstract. The motivation for this study comes from a question posed by I.N. Herstein

in the Israel Journal of Mathematics in 1978. Specifically, let D be a division ring with

center F . The aim of this paper is to demonstrate that every quasinormal subgroup of the

multiplicative group of D, which is radical over some proper division subring, is central if

one of the following conditions holds: (i) D is weakly locally finite; (ii) F is uncountable;

or (iii) D is the Mal’cev-Neumann division ring.

1. Introduction

The motivation of this study comes from a question posed by Herstein [13] in
1978: Is it true that every subnormal subgroup of the multiplicative group of a
division ring D which is radical over the center F of D is central? Herstein himself
showed that the conditions “subnormal” and “normal” are equivalent [14]. At the
present, the question is affirmatively answered for the following particular cases:
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• for periodic subgroups [13, Theorem 8];

• for a division ring with uncountable center [14, Theorem 2];

• for a division ring finite dimensional over the center [9, Theorem 1];

• for normal subgroups in a division ring of type 2, where the center F is
replaced by an arbitrary proper division subring K of D [8, Theorem 3.2].

Motivated by the results obtained in [8, Theorem 3.2], the authors posed a more
general question: For a division ring D, given a normal subgroupN of D∗, is N con-
tained in the center F of D, provided it is radical over some proper division subring
K of D? In this paper, we replace the assumption “normal” with “quasinormal”. In
fact, for a division ring D with center F , we show that every quasinormal subgroup
of the multiplicative group of D which is radical over some proper division subring
is central in case of one of the following conditions:

(1) D is weakly locally finite;

(2) F is uncountable;

(3) D is the Mal’cev-Neumann division ring.

Recall that, in the theory of division rings, there are several classical construc-
tions of new division rings from given ones. One of such structures is the class of
Mal’cev-Neumann division rings, were completely presented in [18] by Neumann
who used Mal’cev’s ideas in [17]. Mal’cev-Neumann division rings have a vast
number of applications. For example, they were used to construct examples of non-
crossed product division algebras [2, 10, 11], to describe the multiplicative group
of group rings of ordered groups, [15, Corollary 14.24], etc. The problems describe
the properties of Mal’cev Neumann division rings and their special cases have been
studied in several papers. For instance, it was proved that there are free group al-
gebras in the Mal’cev-Neumann division rings [19]; there are free symmetric group
algebras in division rings generated by poly-orderable groups [6]. Also, Amitsur
and Tignol determined abelian Galois subfields of the Mal’cev-Neumann division
rings with G finite and D a field in [22]. In [4], the authors introduced weakly
locally finite division rings. Recall that a division ring D is called weakly locally

finite if for every finite subset S of D, the division subring of D generated by S is
finite dimensional over its center. Also in [4], by using the general structure of the
Mal’cev-Neumann division rings, they gave an example to prove that the class of
weakly locally finite division rings is strictly contained in the class of division rings
that is finite dimensional over its center.

The paper is organized as follows: In Section 2, we prove that N is central in
the case where D has the uncountable center and that N is a normal subgroup of
D∗ which is radical over a proper division subring of D. This is an important result
for replacing the “normal subgroup” by the “quasinormal subgroup” in the next
sections. In Section 3, by considering the similar result of the Herstein conjecture
and by considering D to be either a weakly locally finite division ring or a division
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ring with uncountable center, we prove that every quasinormal subgroup of D∗

which radical over a proper division subring ofD is central. In Section 4, we also give
some results regarding quasinormal subgroups of D∗ which is radical over a proper
division subring of D, as an interesting example for the class of these subgroups.
In Section 5, we investigate quasinormal subgroups of the multiplicative group D∗

of the Mal’cev-Neumann division ring D, we also show that every quasinormal
subgroup of D∗ which is radical over a proper division subring of D is central.

The symbols and notations we use in this paper are standard that can be found
in the literature on division rings and in the cited items of the presented paper.

2. Normal Subgroups in Division Rings that are Radical over Proper

Division Subrings

Recall that a division ring D with center F is said to be a division ring of type

2 if for every two elements x, y ∈ D, the division subring F (x, y) generated by x, y
over F is a finite dimensional vector space over F . An element x ∈ D is radical over
F if there exists some positive integer n(x) depending on x such that xn(x) ∈ F . A
subset S of D is radical over F if every element of S is radical over F . If we replace
F by some division subring L of D, then we have the notion of radicality over L.

In [8, Theorem 3.2], it was shown that every normal subgroup of the multi-
plicative group of a division ring of type 2 which is radical over its proper division
subring is central. The proof of [8, Theorem 3.2] is based on the properties of a
division subring generated by two elements over F . We use this idea to prove the
following theorem.

Theorem 2.1. Let D be a division ring with center F and N a normal subgroup

of D∗ which is radical over a proper division subring of D. Assume that S is a

finite subset of D and K = F (S) is the division subring of D generated by S over

F . Then, N ∩K is radical over the center Z(K) of K.

Proof. Let L be a proper division subring of D such that N is radical over L. If
|S| = 1, then K is a field. Thus, let |S| ≥ 2. We can assume that S = {x1, . . . , xk},
where k ≥ 2. Suppose a ∈ N ∩ K. We claim that, for any x in S, there exists a
positive integer n so that anx = xan.

Case 1: x 6∈ L

Clearly, we can assume a + x 6= 0 and x 6= ±1. Consider the elements
α = (a+ x)a(a+ x)−1 and β = (x + 1)a(x + 1)−1. Since N is normal in D∗ and
radical over L, there exist some positive integers m1 and m2 such that

αm1 = (a+ x)am1(a+ x)−1 ∈ L and βm2 = (x+ 1)am2(x+ 1)−1 ∈ L.

With n1 = m1m2, we have

αn1 = (a+ x)an1 (a+ x)−1 ∈ L and βn1 = (x+ 1)an1(x+ 1)−1 ∈ L.
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There are two possible subcases for a given element a ∈ N .

Subcase 1.1: a ∈ L

Then,
αn1(a+ x) − βn1(x+ 1) = (a+ x)an1 − (x+ 1)an1 . (1)

This implies
αn1a+ αn1x− βn1x− βn1 = aan1 − an1 . (2)

Hence,
(αn1 − βn1)x = an1(a− 1) + βn1 − αn1a. (3)

Since x 6∈ L and αn1 − βn1 , an1(a− 1) + βn1 − αn1a ∈ L, from the last equality
we must have αn1 − βn1 = 0. Now, from (3), we get an1 = αn1 = βn1 . Recall that
βn1 = (x+ 1)an1(x+ 1)−1. This implies that an1x = xan1 .

Subcase 1.2: a 6∈ L

Since a is radical over L, there exists a positive integerm such that b := am ∈ L.
According to Subcase 1.1, there exists a positive integer n1 such that bn1x = xbn1 .
Hence, amn1x = xamn1 .

Case 2: x ∈ L

Take c ∈ D\L. According to Case 1, there exist positive integers m1 and m2

such that am1c = cam1 and am2(x+ c) = (x+ c)am2 . Hence, am1m2x = xam1m2 .
Thus, the claim is proved.
Therefore, for each i = 1, 2, ..., k, there exists a positive integer ni such that

anixi = xia
ni . Now, if n = n1n2 . . . nk, then anxi = xia

n for all i = 1, 2, ..., n. This
implies that an ∈ Z(K), that is, a is radical over Z(K). 2

Using Theorem 2.1, we can now extend some earlier results. In [14], Herstein
proved that in a division ring D with uncountable center F , if a normal subgroup
of D∗ is radical over F then it is central. In the following theorem, we will show
that F can be replaced by an arbitrary proper division subring of D.

Theorem 2.2. Let D be a division ring with uncountable center and N a normal

subgroup of D∗. If N is radical over a proper division subring of D, then it is

central.

Proof. Let F be the center of D. Assume that N is non-central. Take x ∈ N and
y ∈ D such that xy 6= yx and put K = F (x, y). By Theorem 2.1, N ∩K is radical
over the center Z(K) of K. Since Z(K) contains F , Z(K) is uncountable. By [14,
Theorem 2], N ∩K ⊆ Z(K). In particular, xy = yx, a contradiction. Hence, N is
central. 2
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3. Herstein Conjecture for Quasinormal Subgroups

Based on the definition of the weakly locally finite division rings in [4], in this
section, we will show a similar result to a conjecture of Herstein for quasinormal sub-
groups. First, we use the following result on the relationship between quasinormal
subgroups, radical subgroups, and subnormal subgroups.

Recall that a subgroup H of a group G is called subnormal in G if there exists
a series of r + 1 subgroups

H = Nr E Nr−1 E · · · E N1 E N0 = G.

A quasinormal subgroup (or permutable subgroup) is a subgroup H of a group G
that commutes (permutes) with every other subgroup K of G with respect to the
product of subgroups, i.e. HK = KH .

Lemma 3.1. Let G be a group and N a quasinormal subgroup of G. Then, either

N is subnormal in G or G is radical over N .

Proof. This lemma is [3, Lemma 6]. 2

Next, combining [4, Theorem 11] and Theorem 2.2, we have the following result
for the normal subgroup of the multiplicative group of a division ring.

Theorem 3.2. Let D be a division ring with center F , L a proper division subring

of D, and N a normal subgroup of D∗ which is radical over L. If either F is

uncountable or D is weakly locally finite, then N is central.

Proof. The result is obtained from [4, Theorem 11] and Theorem 2.2. 2

For a group G, the normal core CoreG(H) of a subgroup H in G is the largest
normal subgroup of G that is contained in H (or equivalently, the intersection of
all conjugates of H), i.e.,

CoreG(H) :=
⋂

x∈G

x−1Hx.

To prove the main result of this section, we need the following results from [7,
Theorem 1], [21, Theorem 4], and [5, Theorem B].

Lemma 3.3. Let G be a group and H a subnormal subgroup of G. If H is a

quasinormal subgroup of G, then H/CoreG(H) is a solvable group.

Proof. This lemma is a part of [7, Theorem 1]. 2

Lemma 3.4.([21, Theorem 4]) Let D be a division ring. Then, all solvable subnor-

mal subgroups of D∗ are central.

The following is an interesting result of Faith in [5] regarding a division ring
radical over its proper division subring.

Lemma 3.5.([5, Theorem B]) Let D be a division ring and L be a proper division

subring of D. If D is radical over L, then D is commutative.
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Now we show the main result of this section.

Theorem 3.6. Let D be either a weakly locally finite division ring or a division

ring with uncountable center, and N a quasinormal subgroup of D∗ which radical

over a proper division subring of D. Then, N is central.

Proof. Let F be the center of D and assume that L is a proper division subring
of D such that N is radical over L. Since N is quasinormal in D∗, by Lemma 3.1,
either N is a subnormal subgroup in D∗ or D∗ is radical over N .
Case 1: N is subnormal in D∗. Since CoreD∗(N) ⊆ N , CoreD∗(N) is radical over
L. Furthermore, CoreD∗(N) is a normal subgroup of D∗, so CoreD∗(N) ⊆ F , by
Theorem 3.2. In particular, CoreD∗(N) is solvable. On the other hand, due to
Lemma 3.3, we get that N/CoreD∗(N) is also solvable, so N is solvable. Then, by
Lemma 3.4, we have N is central.
Case 2: D∗ is radical over N . Since N is radical over L, we obtain that D is
radical over L. Then, according to Lemma 3.5, D is commutative. Consequently,
N is central.

In both cases, N is central. The proof is now complete. 2

4. Some More Results on Quasinormal Subgroups

In this section, we will give some results regarding quasinormal subgroups of
D∗ which are radical over a proper division subring of D, as an interesting example
for the class of these subgroups. First, we have the following lemma.

Lemma 4.1. Let D be a division ring with center F , and assume that N is a

normal subgroup of D∗. If N is radical over F , then for any a ∈ N with a2 ∈ F ,

we have a ∈ F .

Proof. Since a ∈ N , for any x ∈ D∗, there exists a positive integer n such that
(axa−1x−1)n ∈ F . If a2 ∈ F , by [13, Theorem 6], a ∈ F . 2

Let D be a division ring with center F . An element a in D is called algebraic
over F if a is a root of a nonzero polynomial over F . Additionally, the minimal
polynomial of a, denoted ma(t), is the monic polynomial of of lowest degree such
that ma(a) = 0. For convenience of use, we give the following two lemmas which are
based on similar ideas from the work [16] of M. Mahdavi-Hezavehi and S. Akbari-
Feyzaabaadi with some slight modifications.

Lemma 4.2. Let D be a division ring with center F , and assume that N is a

normal subgroup of D∗ which is radical over F . If the minimal polynomial of an

element a ∈ N has degree n, then an ∈ F .

Proof. By replacing N by the subgroup generated by N ∪ F ∗, so without loss of
generality, we assume that N contains F ∗. Let a ∈ N . We assume that am ∈ F
for some positive m and n is the degree of ma(t). We must show that an ∈ F .
Indeed, observe that n = [F (a) : F ] so that by [16, Lemma 1], there exists c ∈
F (a)∗ ∩ D′ such that NF (a)/F (a) = can. Then, c = NF (a)/F (a)a

−n which implies
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that cm = NF (a)/F (a)
ma−mn = λ ∈ F . Since NF (a)/F (c) = 1, we obtain that

1 = NF (a)/F (c)
mn = λn = cmn. On the other hand, since N contains F , we have

c ∈ N . By [13, Theorem 9], c ∈ F , it follows that an = c−1NF (a)/F (a) ∈ F . 2

Lemma 4.3. Let D be a division ring with center F , and assume that N is a

normal subgroup of D∗. If N is radical over F , then for any a ∈ N with a3 ∈ F ,

we have a ∈ F .

Proof. We can suppose that D is noncommutative. Assume that a ∈ N such that
a3 ∈ F . Let f(t) be the minimal polynomial of a over F . Then, the degree of f(t) is
less than or equal to 3. If the degree of f(t) is 2, then by Lemma 4.2, a2 ∈ F . Due
to Lemma 4.1, a ∈ F . Now we assume that the degree of f(t) is 3. By Lemma 4.2
again, the minimal polynomial of a is f(t) = t3 − λ, with λ ∈ F . By Wedderburn’s
Theorem,

f(t) = (t− a)(t− bab−1)(t− dad−1) for some b, d ∈ D∗.

Thus, a + bab−1 + dad−1 = 0. Let α = bab−1a−1 and β = dad−1a−1, leads to
1 + α + β = 0. By the fact that α and β are in N , it follows that α and β
are radical over F . Let m be the degree of the minimal polynomial of α. Then,
m = [F (α) : F ]. Because 1 + α + β = 0, m = [F (β) : F ]. By Lemma 4.2, αm ∈ F
and βm ∈ F , so we have αm ∈ F and (1 + α)m ∈ F . Moreover, since m is the
degree of the minimal polynomial of α on F , we get m = 1 or char(D) = p > 0
and p | m. If the latter happens, then by putting m = pq we get αm = (αq)p ∈ F ,
so by [14, Lemma 2] we obtain αq ∈ F , which contradicts the minimality of m.
So m = 1, that is, α ∈ F . We claim that α = 1. Assume that α 6= 1. By
the fact that bab−1 = αa, one has a3 = (bab−1)3 = α3a3, so α3 = 1. Therefore,
ab−3a−1 = (ab−1a−1)3 = α3b−3 = b−3, so we have ab3 = b3a. Put D1 = F (a, b) the
division subring of D generated by a, b over F . Observe that α 6= 1, so that ab 6= ba.
It implies that D1 is noncommutative. Let F1 be the center of D1. Observe that
b3a = ab3, so b3 ∈ F1. Because bab−1 = αa, and α, b3 ∈ F1, every element in D1

may be written as

∑

finite

αia
nibmi , where αi ∈ F1, ni ∈ N; 0 ≤ mi ≤ 2.

Hence, D1 is finite dimensional over the subfield F1(a) of D1 generated by F1. It is
well known that D1 satifies a polynomial identity and, as a corollary, D is centrally
finite. The claim is shown. Since N is radical over F , it follows that N ∩ D1 is
radical over F1. Thus, according to [4, Theorem 10], N ∩D1 ⊆ F1. In particular,
a ∈ F1, i.e. ab = ba, a contradiction. The claim is shown, that is, α = 1. Similarly,
β = 1. Hence, char(D) = 3. Since a3 ∈ F , so by applying [13, Lemma 1] we obtain
a ∈ F . 2

Lemma 4.4. Let D be a division ring with center F , and assume that N is a

normal subgroup of D∗ which is radical over a proper division subring of D. Then

CD(a) = CD(a2) = CD(a3) for any a ∈ N .
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Proof. Clearly, CD(a) ⊆ CD(a2). Now let b ∈ CD(a2), and put K = F (a, b). By
Theorem 2.1, N ∩K is radical over the center Z(K) of K. Observe that a2 ∈ Z(K),
so a ∈ Z(K) by Lemma 4.1. In particular, ab = ba. Hence, CD(a) = CD(a2).

Using Lemma 4.3, by the similar way, we can get CD(a) = CD(a3). 2

Now we can prove an analogue of [16, Corollary 3] for a quasinormal subgroup
which is radical over a proper division subring.

Theorem 4.5. Let D be a division ring with center F and N a quasinormal

subgroup of D∗. Assume that L is a proper division subring of D and for every

x ∈ N , there exist positive integers m,n such that x2n3m ∈ L. Then, N is central.

Proof. With similar reasons to those in the proof of Theorem 3.6, we only need to
consider the case of N is a normal subgroup of D∗. It suffices to prove that CD(a) =
D for any a ∈ N . For any a ∈ N, b ∈ D, by repeating the argument in the proof
of Thereom 2.1, there exist positive integers m and n such that a2

m3nb = ba2
m3n .

It implies that b ∈ CD(a2
n3m). By Lemma 4.4, CD(a) = CD(a2

n3m), which implies
that b ∈ CD(a). Thus, CD(a) = D for any a ∈ N . 2

Theorem 4.6. Let D be a division ring, L a proper division subring of D, and

N a quasinormal subgroup of D∗. If there exists a positive integer d such that for

every x ∈ N , xn ∈ L for some n ≤ d, then N is central.

Proof. With similar reasons to those in the proof of Theorem 3.6, we only need to
consider the case of N is a normal subgroup of D∗. Let F be the center of D. For
any x, y ∈ N , put K = F (x, y) and M = N ∩K. Observe that for any a ∈ M , by
the same argument as in the proof of Theorem 2.1, we can choose some n ≤ (d!)3

such that an ∈ Z(K). By [1, Theorem 1], M is abelian, so xy = yx. Hence, N is
abelian, and by [12], N is central. 2

5. Quasinormal Subgroups of the Mal’cev-Neumann Division Rings

Which are Radical over a Proper Division Ring

Throughout this section, we assume that D is a division ring with center F , G is
a nontrivial ordered group, and Φ: G → Aut(D), x 7→ Φx is a homomorphism from
G to the automorphism group Aut(D). Recall that the Mal’cev-Neumann division
ring of Laurent series D = D((G,Φ)) is defined as a ring consisting of all Laurent
series

α =
∑

g∈G

agg, where ag ∈ D and supp(α) = {g ∈ G | ag 6= 0} is a well-ordered set,

with “addition” and “multiplication” defined respectively by
∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g

and
(
∑

g∈G

agg)(
∑

h∈G

bhh) =
∑

u∈G

∑

gh=u

agΦg(bh)u
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(see [15, page 229–235] or [18]). The aim of this section is to show that every
quasinormal subgroup of D∗ which is radical over a proper division subring of D
is central. Note that in general, we do not know the dimension of D over its
center Z(D). There is a few information about this dimension in particular cases.
For instance, if D is a field, G is nontrivial and Φ is injective then dimZ(D) D

is infinite [15, Corollary 14.26]. We can also prove that if G is nontrivial with
Z(G) = 1, then dimZ(D) D ≥ dimF D. In fact, for any α =

∑

g∈G

agg ∈ Z(D), one

has αh = hα for any h ∈ G, so α = a ∈ D since Z(G) = 1. Moreover, ab = ba
for any b ∈ D. Hence, α = a ∈ F . This means Z(D) ⊆ F , and it follows that
dimZ(D) D ≥ dimF D = dimF D((G,Φ)) ≥ dimF D.

For any element α =
∑

g∈G

agg ∈ G ∈ D, the minimal element of the set supp(α)

will be denoted by min(α). Observe that min(αβ) = min(α).min(β) for any α, β ∈
D. The following lemma is [15, Corollary 14.23].

Lemma 5.1.([15, Corollary 14.23]) Let D = D((G,Φ)) be as above. For any α ∈ D,

if min(α) > 1, then
∞
∑

i=0

aiα
i is an element of D for any ai ∈ D.

Lemma 5.2. Let D = D((G,Φ)) be as above and α be an element of D such

that min(α) > 1. If a subset R ⊆ D has at least two elements, then the subset

S =
{

∞
∑

i=0

aiα
i | ai ∈ R

}

is uncountable.

Proof. By Lemma 5.1, S is a subset of D. Clearly, S is infinite. Assume that S is
countable, that is, there exists a bijection f : N → S. For any n ∈ N, βn = f(n) =
∞
∑

i=0

aniα
i. For i ≥ 0, choose bi from R\{aii} and put β =

∞
∑

i=0

biα
i ∈ S. One has

β 6= βn for any n ∈ N. This implies that f is not a bijection, a contradiction. Hence,
S is uncountable. 2

As a corollary, D = D((G,Φ)) is uncountable if the group G is nontrivial. But
the center of D is not necessarily uncountable. For example, if D is a countable
field and Φ is injective then the center of D is a subfield of D, which is countable
(see [15, Corollary 14.26]).

Now, we are ready to prove the main theorem of this section.

Theorem 5.3. Let D = D((G,Φ)) be the Mal’cev-Neumann division ring of Lau-

rent series as above. Then, every quasinormal subgroup of D∗ which is radical over

a proper division subring of D is central.

Proof. Let F be the center of D and assume that N is a quasinormal subgroup of
D∗ which is radical over a proper division subring H of D.

Case 1: N is a normal subgroup of D∗



196 L. Q. Danh and T. T. Deo

Assume that N is not central. Put

L = Z(D) ∩ { a ∈ D | Φg(a) = a for any g ∈ G }.

Now, we have two subcases.

Subcase 1.1: min(α) = 1 for any α ∈ F∗

It is clear that L ⊆ F. Put α =
∑

1≤g∈G

agg ∈ F. Then, for any b ∈ D, one has

αb = bα. This implies that a1b = ba1, so a1 ∈ Z(D). Moreover, for each h ∈ G,
we have hα = αh, which implies that Φh(a1) = a1. Hence, a1 ∈ L. It follows that
a1 ∈ F, and so, α − a1 ∈ F. However, since min(α − a1) 6= 1, we conclude that
α = a1 ∈ L. Thus, F = L.

Now, if min(β) = 1 for any β ∈ N\H, then min(δ) = 1 for any δ ∈ H ∩ N .
In fact, if there exists δ ∈ H ∩ N such that min(δ) 6= 1, then δβ ∈ N\H and
min(δβ) 6= 1, a contradiction. This implies that min(β) = 1 for any β ∈ N , so N
is a subset of D. Since G is nontrivial, by [20, 14.3.8, Page 439], we have D ⊆ F.
In particular, N ⊆ F, a contradiction. Thus, there exists β =

∑

g∈G

bgg ∈ N\H

such that min(β) 6= 1. Since min(ββ−1) = min(1) = 1, without loss of generality,
we can assume that min(β) ≥ 1, that is, g ≥ 1 for any g ∈ supp(β). The condi-
tion min(β) 6= 1 implies that β 6∈ L, so there exists a ∈ D and h ∈ G such that
βah 6= ahβ. Let K = F(b1, β, ah) be the division subring of D generated by b1, β, ah
over F. Then, by Theorem 2.1, K is noncommutative and N ∩K is radical over the
center Z(K) of K. Hence, there exists a positive integer n such that βn ∈ Z(K).
Since βn commutes with ah, so is bn1 . Put γ = βn − bn1 . Then, min(γ) > 1, and by

Lemma 5.1, S = {
∞
∑

i=0

ciγ
i | ci ∈ L } is a subset of D. Let K1 be a division subring

of D generated by {b1, ah, β}∪S over L. Put H1 = K1 ∩H and N1 = K1 ∩N . We
have H1 is a proper subdivision ring of K (because β 6∈ H1) and N1 is radical over

H1. It is easy to check that γ ∈ Z(K1), which implies that S = {
∞
∑

i=0

ciγ
i | ci ∈ L }

is a subset of Z(K1). By Lemma 5.2, S is uncountable, so is Z(K1). Due to Theo-
rem 2.2, N1 is central. In particular, βah = ahβ, a contradiction.

Subcase 1.2: There exists α ∈ F∗ such that min(α) 6= 1

Since min(αα−1) = min(1) = 1, without loss of generality, we can assume that

min(α) > 1. Therefore, by Lemma 5.1,
∞
∑

i=0

ciα
i, ci ∈ L, is an element of D, and it

belongs to F. Hence, F contains the set T = {
∞
∑

i=0

ciα
i | ci ∈ L }. By Lemma 5.2, T

is uncountable, so is F. Now, by Theorem 2.2, N is central, a contradiction.
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Case 2: N is a non-normal subgroup of D∗

By the assumption, we have CoreD∗(N) is a normal subgroup of D∗. Therefore,
according to Case 1 we obtain that CoreD∗(N) is central. With similar reasons to
those in the proof of Theorem 3.6 we get the result. 2
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