• Title/Summary/Keyword: quasi-continuous and continuous module

Search Result 3, Processing Time 0.014 seconds

On the decompasition of CS-module and its applications

  • Rim, Seog-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.211-215
    • /
    • 1998
  • In this short note, we try to apply the decomposition theorem of CS-module to reprove the direct sum of CS-modules be CS under certain condition.

  • PDF

A DECOMPOSITION THEOREM FOR UTUMI AND DUAL-UTUMI MODULES

  • Ibrahim, Yasser;Yousif, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1563-1567
    • /
    • 2021
  • We show that if M is a Utumi module, in particular if M is quasi-continuous, then M = Q ⊕ K, where Q is quasi-injective that is both a square-full as well as a dual-square-full module, K is a square-free module, and Q & K are orthogonal. Dually, we also show that if M is a dual-Utumi module whose local summands are summands, in particular if M is quasi-discrete, then M = P ⊕ K where P is quasi-projective that is both a square-full as well as a dual-square-full module, K is a dual-square-free module, and P & K are factor-orthogonal.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).