• Title/Summary/Keyword: quantum phase

Search Result 190, Processing Time 0.031 seconds

Corrosion Inhibition Studies on Low Carbon Steel in Hydrochloric Acid Medium Using o-Vanillin-Glutamine Schiff Base

  • Thusnavis, G. Rexin;Archana, T.V.;Palanisamy, P.
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The o-Vanillin - Glutamine Schiff base [2-Hydroxy-3-Methoxy BenzylidineCarbomyl) -2-Butanoic Acid] was examined for low carbon steel corrosion inhibition in acid media. Weight loss studies were carried out at three different temperatures to determine the inhibition efficiency (IE). Electrochemical impedance spectroscopy revealed that the charge transfer resistance controlled the corrosion reaction and Tafel polarization indicated that the Schiff base acts as mixed mode of inhibitor. SEM images were recorded for the surface morphology of the low carbon steel surface. DFT studies revealed corrosion control mechanisms using quantum chemical parameters such as EHOMO, ELUMO, energy gap (∆E), chemical Hardness (η), chemical Softness (σ), Electronegativity (χ), and the fraction of electron transferred (∆N), which is calculated using Gaussian software 09. The gas-phase geometry was fully optimized in the Density Functional Theory (DFT/B3LYP-6-31G (d)).The DFT results are in good agreement with the experimental results. All the results proved that the Schiff Base (2-Hydroxy-3-Metoxy BenzylidineCarbomyl) -2-Butanoic is a suitable alternative for corrosion inhibition of low carbon steel in acid media.

Preliminary importance analyses on model for pH in the presence of organic impurities in the aqueous phase for a severe accident of a nuclear power plant

  • Yoonhee Lee;Yong Jin Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2079-2091
    • /
    • 2024
  • In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment when the pH changes during a severe accident. Validation of the model is performed with P10T2 and P11T1 experiments carried out by AECL in Canada under the BIP project. Importance analyses of the pH calculation model in the AnCheBi code are then performed with the aforementioned experimental data via Latin hypercube sampling on the reaction coefficients, sensitivity analyses of AnCheBi, and calculation of the correlation coefficients between the reaction coefficients and figure of merits (the pH and the concentrations of the various iodine species). From the importance analyses, we provide the sensitivity of the pH calculation model to the change of pH and the concentrations of the various iodine species and the reaction coefficients related with the dominant phenomena underlying the change of pH and the concentrations of the species.

Investigation of a nonreciprocal phase shift properties of optical waveguide isolators with a magneto-optic layer (자기 광학적층을 갖는 광 도파로 아이솔레이터 제작을 위한 비가역적 위상변위에 대한 연구)

  • Yang, Jeong-Su;Kim, Young-Il;Byun, Young-Tae;Woo, Deok-Ha;Lee, Seok;Kim, Sun-Ho;Yi, Jong-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.142-145
    • /
    • 2003
  • The nonreciprocal phase shift characteristics of infinite slab optical waveguides with magneto-optic materials in the cladding layer was calculated at 1.55 ${\mu}{\textrm}{m}$ for optical isolators. The infinite slab waveguide structures considered in this paper were as follows. rho magneto-optic materials used as a cladding layer were Ce:YIG and LNB(LuNdBi)$_3$(FeAl)$_{5}$)$_{12}$,). Their specific Faraday rotations Θ$_{F}$ are 4500$^{\circ}$/cm, 500$^{\circ}$/cm at wavelength 1.55 ${\mu}{\textrm}{m}$ respectively. The guiding layer with multi-quantum well structure was used, and it consists of 1.3Q and InGaAs. In order to investigate the effect of evanescent field penetrating the cadding, layer, guiding mode characteristics were calculated for the cases when the substrate is InP and air. We calculated the minimum lengths of 90$^{\circ}$ nonreciprocal phase shifters and their optimum guiding layer thicknesses in various optical waveguide structures.res.s.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4 (LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구)

  • Kwon, Woo-Jun;Lee, In-Kyu;Rhee, Chan-Hyuk;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

Improved Magnetic Anisotropy of YMn1-$xCrxO_3 $ Compounds

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.218-218
    • /
    • 2012
  • Recently, hexagonal manganites have attracted much attention because of the coexistence of ferroelectricity and antiferromagnetic (AFM) order. The crystal structure of hexagonal manganites consists of $MnO_5$ polyhedra in which $Mn^{3+}$ ion is surrounded by three oxygen atoms in plane and two apical oxygen ions. The Mn ions within Mn-O plane form a triangular lattice and couple the spins through the AFM superexchange interaction. Due to incomplete AFM coupling between neighboring Mn ions in the triangular lattice, the system forms a geometrically-frustrated magnetic state. Among hexagonal manganites, $YMnO_3$, in particular, is the best known experimentally since the f states are empty. In addition, for applications, $YMnO_3$ thin films have been known as promising candidates for non-volatile ferroelectric random access memories. However, $YMnO_3$ has low magnetic order temperature (~70 K) and A-type AFM structure, which hinders its applications. We have synthesized $YMn1_{-x}Cr_xO_3$ (x = 0, 0.05 and 0.1) samples by the conventional solid-state reaction. The powders of stoichiometric proportions were mixed, and calcined at $900^{\circ}C$ for $YMn1_{-x}Cr_xO_3$ for 24 h. The obtained powders were ground, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, and heated up to $1,300^{\circ}C$ and sintered in air for 24 h. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu $K{\alpha}$ radiation. All the magnetization measurements were carried out with a superconducting quantum-interference-device magnetometer. Our experiments point out that the Cr-doped samples show the characteristics of a spin-glass state at low temperatures.

  • PDF

The Effect of Laser Geometry and Material Parameters on the Single Mode Gain Difference in Quarter Wavelength Shifted DFB Laser above Threshold Current (문턱전류이상에서 구조 및 재료 변수들이 $\lambda$/4위상천이 DFB 레이저의 단일모드 이득차에 미치는 영향)

  • 이홍석;김홍국;김부균;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.75-84
    • /
    • 1999
  • Systematic studies for the effect of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the single mode gain difference and the frequency detuning are performed for $\lambda$/4 phase shifted DFB lasers above threshold. The above threshold characteristics are mainly determined by the linewidth enhancement factor, not by the confinement factor or the parameter defined by the product of the linewidth enhancement factor and the confinement factor. The normalized internal loss defined by the product of the internal loss and the cavity length mainly determines the above threshold characteristics compared to that of the internal loss or the cavity length alone. The effect of the cavity length on threshold characteristics is larger than that of the internal loss in the case of the same normalized internal loss. The above threshold characteristics of quantum well lasers are more resistant to the variations of the confinement factor and the normalized internal loss than those of bulk lasers due to the small linewidth enhancement factor.

  • PDF

Synthesis of scheelite-type nanocolloidal particles by pulsed laser ablation in liquid and their size distribution analysis

  • Lee, Jung-Il;Shim, Kwang Bo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • A novel pulsed laser ablation process in liquid was investigated to prepare scheelite-type ceramic [calcium tungstate ($CaWO_4$) and calcium molybdate ($CaMoO_4$)] nanocolloidal particles. The crystalline phase, particle morphology, particle size distribution, absorbance and optical band-gap were investigated. Stable colloidal suspensions consisting of well-dispersed $CaWO_4$ and $CaMoO_4$ nanoparticles with narrow size distribution could be obtained without any surfactant. Particle tracking analysis using optical microscope combined with image analysis was applied for a fast determination of particle size distribution in the prepared nanocolloidal suspensions. The mean nanoparticle size of $CaWO_4$ and $CaMoO_4$ colloidal nanoparticles were 16 nm and 30 nm, with the standard deviations of 2.1 and 5.2 nm, respectively. The optical absorption edges showed blue-shifted values about 60~70 nm than those of reported in bulk crystals. And also, the estimated optical energy band-gaps of $CaWO_4$ and $CaMoO_4$ colloidal particles were 5.2 and 4.7 eV. The observed band-gap widening and blue-shift of the optical absorbance could be ascribed to the quantum confinement effect due to the very small size of the $CaWO_4$ and $CaMoO_4$ nanocolloidal particles prepared by pulsed laser ablation in liquid.

Preparation of Different Fe Containing TiO2 Photocatalysts and Comparison of Their Photocatalytic Activity

  • Meng, Ze-Da;Zhang, Kan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.228-234
    • /
    • 2010
  • In this paper, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. $TiO_2$, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of $TiO_2$. The degradation rate of the methylene blue solution increased when using Fe-fullerene/$TiO_2$ compounds.

Energy Transfer and Device Performance in Polymer Based Electrophosphorescent Light Emitting Diodes and Effect of Ligand Modification in the Optical and Electrical Properties of Phosphorescent Dyes (고분자 전기인광소자에서의 에너지 전이, 소자 특성 및 인광염료의 리간드 변화에 따른 광학적, 전기적 특성 변화)

  • Lee Chang-Lyoul;Das R. R.;Noh Young-Yong;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.107-121
    • /
    • 2005
  • Electrophosphorescent light emitting diodes (LEDs) using phosphorescent dyes as triplet emitter, which incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling, can achieve the theoretically $100\%$ internal quantum efficiency. In this paper, we report on the performance and the energy transfer mechanism of polymer based highly efficient electrophosphorescent LEDs. The effect of phase separation and aggregation to the energy transfer between polymer hosts and phosphorescent guests and performance of polymer electrophosphorescent LEDs were investigated. Finally, the effect of introducing substitute group and ligand modification of phosphorescent dyes on optical and electrical properties are reported.