• Title/Summary/Keyword: quantitative detection

Search Result 1,155, Processing Time 0.031 seconds

Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses

  • Jeong, Young-Seon;Hwang, Sangheum;Ko, Young-Don
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.392-400
    • /
    • 2015
  • Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufacturing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by using OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extraction from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES.

Syntheses of 3-Pyrimidyl- and 3-Pyranyl-5,6-benzocoumarin Derivatives

  • El-Deen, Ibrahim M.;Al-Wakeel, El-Sayed I.;El-Mawla, Ahmed G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.610-612
    • /
    • 2002
  • A competitive enzyme-linked immunosorbent assay (ELISA) was developed for the quantitative detection of organophosphorus insecticide cyanophos. An analogue (hapten) of cyanophos was synthesized and was coupled to BSA to produce polyclonal antibodi es from rabbits. The antisera were screened against another hapten coupled to ovalbumin (OVA). Using the sera of highest specificity, an antigen-coated ELISA was developed, which showed an I50 of 310 ng/mL with the detection limit of 20 ng/mL. The antibodies showed negligible cross-reactivities with other organophosphorus pesticides except for parathion-methyl, which makes the assay suitable for the selective detection of cyanophos.

Evaluation of Various Real-Time Reverse Transcription Quantitative PCR Assays for Norovirus Detection

  • Yoo, Ju Eun;Lee, Cheonghoon;Park, SungJun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.816-824
    • /
    • 2017
  • Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for the sensitive and accurate detection of these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays, and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assays A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, and sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A ZEN internal quencher, which decreases nonspecific fluorescence during the PCR, was added to Assay D's probe, which further improved the assay performance. This study compared several detection assays for noroviruses, and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

A Study on the Detection Range of Acoustic Instruments for Fisheries (수산음향계측장치의 탐지범위에 대한 연구)

  • Park, Ju-Sam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.54-63
    • /
    • 2005
  • Detection ranges of acoustic instruments mainly used for fisheries and their research are derived as the range bordered by a certain signal-to-noise ration (SNR) thershold. The SNR is depicted by several factors on transmitting and receiving, sound propagation, scattering by objects, and mainly self-ship noise. The detection ranges are shown for several fisheries instrument, such as echo sounder, quantiative echo sounder, and bio-telemetry system. The results can be used for designing the instruments, examining the capability of user's own instruments, and interpreting obtained data or echograms. Increasing transmitting power is not as effective for high frequencies as for low frequencies to increase the detection range. Comparison of volume backscattering strengths obtained by the quantitative echo sounder at several frequencies should be done within the same detection range. By applying the concept of the detection range for the bio-telemetry receiver beams, the number of the beams and the beamwidths can be determined.

Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon;Lee, Junghyun;Song, Jieun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.

Computer Vision-based Method to Detect Fire Using Color Variation in Temporal Domain

  • Hwang, Ung;Jeong, Jechang;Kim, Jiyeon;Cho, JunSang;Kim, SungHwan
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.81-89
    • /
    • 2018
  • It is commonplace that high false detection rates interfere with immediate vision-based fire monitoring system. To circumvent this challenge, we propose a fire detection algorithm that can accommodate color variations of RGB in temporal domain, aiming at reducing false detection rates. Despite interrupting images (e.g., background noise and sudden intervention), the proposed method is proved robust in capturing distinguishable features of fire in temporal domain. In numerical studies, we carried out extensive real data experiments related to fire detection using 24 video sequences, implicating that the propose algorithm is found outstanding as an effective decision rule for fire detection (e.g., false detection rate <10%).

Assessment of the Caries Detection Ability of Quantitative Light-induced Fluorescence (QLF) in Primary Teeth in vitro (유치의 치아우식증 확인을 위한 정량형광분석(QLF) 검사법의 우식탐지능력 평가)

  • Cho, Kyung Hyun;Kang, Chung-Min;Jung, Hoi-In;Lee, Tae Yang;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.1
    • /
    • pp.65-75
    • /
    • 2022
  • The aim of this study was to evaluate QLF (quantitative light-induced fluorescence) technology for the caries detection in primary teeth and validate the relationships between the cavity volume of carious lesions and QLF analysis results. Total 125 tooth surfaces include 53 occlusal surfaces, and 72 proximal surfaces were investigated with the portable QLF device for detection of dental caries in primary molars. Micro-CT radiograph was also performed to classify carious lesions and calculate the cavity volume. QLF showed good accuracy and reliability (sensitivity 0.75 - 0.94, specificity 0.82 - 0.95, and AUROC 0.88 - 0.98) for the caries detection in primary teeth except 𝚫R average results of proximal caries which showed relatively low values. Statistically significant relationships were found between 𝚫F average, QS-Index and the cavity volume according to Spearman rank-order correlation coefficients (r = 0.805 - 0.832, p < 0.001). QLF detection method would be a harmless and reliable way for children to diagnose dental caries without the concern about radiation exposure.

A Study on Tracking and Quantitative Analysis of Regional Left Ventricular Wall Motion in Echocardiography (심초음파에서 국소 좌심실벽 운동 추적 및 정량적 분석에 관한 연구)

  • 신동규;김동윤;최경훈;박광훈
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.115-123
    • /
    • 1999
  • The two dimensional echocardiography is widely used to evaluate regional wall motion abnormality, because of its abilities to depict left ventricular wall motion. A number of researches have been processed for evaluation and quantitative analysis of left ventricular wall motion functions. In this paper, we proposed an algorithm which detects automatically and analyze quantitatively endocardial wall motion during systole. The echocardiograms were obtained in the short-axis views in normal subjects. Automated edge detection and endocardial contour tracking algorithm was applied to each frames, quantitative analysis based on segmentation was performed, pre-defined color overlays superimposed on the gray scale images, and the images was animated. The proposed algorithm provided automated, quantitative diagnosis of regional wall motion abnormality.

  • PDF

Quantitative evaluation of the molecular marker using droplet digital PCR

  • Shin, Wonseok;Kim, Haneul;Oh, Dong-Yep;Kim, Dong Hee;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.4.1-4.6
    • /
    • 2020
  • Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE-association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.