• Title/Summary/Keyword: quantitative detection

Search Result 1,155, Processing Time 0.029 seconds

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

A Method for Quantitative Performance Evaluation of Edge Detection Algorithms Depending on Chosen Parameters that Influence the Performance of Edge Detection (경계선 검출 성능에 영향을 주는 변수 변화에 따른 경계선 검출 알고리듬 성능의 정량적인 평가 방법)

  • 양희성;김유호;한정현;이은석;이준호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.993-1001
    • /
    • 2000
  • This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.

  • PDF

Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques

  • Junghoan Park;Jeong Min Lee;Gunwoo Lee;Sun Kyung Jeon;Ijin Joo
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.13-29
    • /
    • 2022
  • Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.

Chemiluminescence immunochromatographic analysis for the quantitative determination of algal toxins

  • Pyo, Dongjin;Kim, Taehoon
    • ALGAE
    • /
    • v.28 no.3
    • /
    • pp.289-296
    • /
    • 2013
  • For the quantitative detection of algal toxin, microcystin, a chemiluminescence immunochromatographic assay method was developed. The developed system consists of four parts, chemiluminescence assay strip (nitrocellulose membrane), horse radish peroxidase labeled microcystin monoclonal antibodies, chemiluminescence substrate (luminol and hydrogen peroxide), and luminometer. The performance of the chemiluminescence immunochromatographic assay system was compared with high performance liquid chromatography (HPLC) detection. The detection limit of chemiluminescence immunochromatographic assay system is several orders of magnitude lower than with HPLC. The chemiluminescence immunochromatography and HPLC results correlated very well with the correlation coefficient ($r^2$) of 0.979.

A Technique for the Quantitative Analysis of the Noise Jamming Effect (잡음재밍 효과에 대한 정량적 분석 기법)

  • Kim, Sung-Jin;Kang, Jong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.91-101
    • /
    • 2005
  • In this paper, a technique for the quantitative analysis of the noise jamming effect is proposed. This technique based upon the mathematical modeling for noise jammers and the probability theory for random processes analyses the jamming effect by means of the modeling of the relationship among jammer, radar variables and radar detection probability under noise jamming environment. Computer simulation results show that the proposed technique not only makes the quantitative analysis of the jamming effect possible, but also provides the basis for quantitative analysis of the electronic warfare environment.

Rapid Identification of Vibrio vulnificus in Seawater by Real-Time Quantitative TaqMan PCR

  • Wang, Hye-Young;Lee, Geon-Hyoung
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.320-326
    • /
    • 2003
  • In order to identify Vibrio vulnificus in the Yellow Sea near Gunsan, Korea during the early and late summers, the efficiency of the real-time quantitative TaqMan PCR was compared to the efficiency of the conventional PCR and Biolog identification system^TM. Primers and a probe were designed from the hemolysin/cytolysin gene sequence of V. vulnificus strains. The number of positive detections by real-time quantitative TaqMan PCR, conventional PCR, and the Biolog identification system from seawater were 53 (36.8%), 36 (25%), and 10 strains (6.9%), respectively, among 144 samples collected from Yellow Sea near Gunsan, Korea. Thus, the detection method of the real-time quantitative TaqMan PCR assay was more effective in terms of accuracy than that of the conventional PCR and Biolog system. Therefore, our results showed that the real-time TaqMan probe and the primer set developed in this study can be applied successfully as a rapid screening tool for the detection of V. vulnificus.

TaqMan Probe Real-Time PCR for Quantitative Detection of Mycoplasma during Manufacture of Biologics (생물의약품 제조공정에서 마이코플라스마 정량 검출을 위한 TaqMan Probe Real-Time PCR)

  • Lee, Jae Il;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.361-371
    • /
    • 2014
  • Mycoplasma is well recognized as one of the most prevalent and serious microbial contaminants of biologic manufacturing processes. Conventional methods for mycoplasma testing, direct culture method and indirect indicator cell culture method, are lengthy, costly and less sensitive to noncultivable species. In this report, we describe a new TaqMan probe-based real-time PCR method for rapid and quantitative detection of mycoplasma contamination during manufacture of biologics. Universal mycoplasma primers were used for mycoplasma PCR and mycoplasma DNA was quantified by use of a specific TaqMan probe. Specificity, sensitivity, and robustness of the real-time PCR method was validated according to the European Pharmacopoeia. The validation results met required criteria to justify its use as a replacement for the culture method. The established real-time PCR assay was successfully applied to the detection of mycoplasma from human keratinocyte and mesenchymal stem cell as well as Vero cell lines artificially infected with mycoplasma. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of mycoplasma contamination during manufacture of biologics.

Detection of proximal caries using quantitative light-induced fluorescence-digital and laser fluorescence: a comparative study

  • Yoon, Hyung-In;Yoo, Min-Jeong;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.432-438
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the in vitro validity of quantitative light-induced fluorescence-digital (QLF-D) and laser fluorescence (DIAGNOdent) for assessing proximal caries in extracted premolars, using digital radiography as reference method. MATERIALS AND METHODS. A total of 102 extracted premolars with similar lengths and shapes were used. A single operator conducted all the examinations using three different detection methods (bitewing radiography, QLF-D, and DIAGNOdent). The bitewing x-ray scale, QLF-D fluorescence loss (${\Delta}F$), and DIAGNOdent peak readings were compared and statistically analyzed. RESULTS. Each method showed an excellent reliability. The correlation coefficient between bitewing radiography and QLF-D, DIAGNOdent were -0.644 and 0.448, respectively, while the value between QLF-D and DIAGNOdent was -0.382. The kappa statistics for bitewing radiography and QLF-D had a higher diagnosis consensus than those for bitewing radiography and DIAGNOdent. The QLF-D was moderately to highly accurate (AUC = 0.753 - 0.908), while DIAGNOdent was moderately to less accurate (AUC = 0.622 - 0.784). All detection methods showed statistically significant correlation and high correlation between the bitewing radiography and QLF-D. CONCLUSION. QLF-D was found to be a valid and reliable alternative diagnostic method to digital bitewing radiography for in vitro detection of proximal caries.

Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

  • Jung, Jae-hyun;Choo, Jae-bum;Kim, Duck-Joong;Lee, Sang-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.277-280
    • /
    • 2006
  • Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 $cm^{-1}$. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.847-859
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.