• Title/Summary/Keyword: quality-of-service, QoS

Search Result 1,469, Processing Time 0.029 seconds

The research of a method to support real-time for OPRoS Execution Engine. (OPRoS 실행엔진에 실시간성 지원 방법에 대한 연구)

  • Ju, min-gyu;Lee, jin-wook;Lee, cheol-hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.15-16
    • /
    • 2011
  • 로봇사업은 전 세계적으로 급속히 성장하고 있는 분야로 미국, 유럽 등 많은 국가들이 막대한 자본을 투자하고 있으며, 우리나라에서도 차세대 전략 산업으로 선정하여 집중적으로 지원하고 있다. 현재 로봇 시스템 및 서비스의 복잡도가 증가함에 따라 소프트웨어의 개발비용, 인력, 유지보수 등의 문제를 해결하기 위해 OPRoS(Open Platform For Robotic Service)라는 로봇 소프트웨어 플랫폼이 개발 되었다. 하지만 OPRoS 실행엔진은 범용 운영체제 위에서 동작되기 때문에 로봇서비스의 QoS(Quality of Service)를 위한 실시간성을 보장하지 못한다. 본 논문에서는 범용운영체제인 윈도우즈 상에서 동작하는 로봇 소프트웨어 플랫폼인 OPRoS의 실행엔진에 RTiK(Real-Time implanted Kernel)을 이용해 실시간성을 보장할 수 있는 방법에 대해 연구 하였다. 또한 RTiK이 이식된 OPRoS 실행엔진의 성능을 측정하였다.

  • PDF

A Study on a Statistical Modeling of 3-Dimensional MPEG Data and Smoothing Method by a Periodic Mean Value (3차원 동영상 데이터의 통계적 모델링과 주기적 평균값에 의한 Smoothing 방법에 관한 연구)

  • Kim, Duck-Sung;Kim, Tae-Hyung;Rhee, Byung-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.87-95
    • /
    • 1999
  • We propose a simulation model of 3-dimensional MPEG data over Asynchronous transfer Mode(ATM) networks. The model is based on a slice level and is named to Projected Vector Autoregressive(PVAR) model. The PVAR model is modeled using the Autoregressive(AR) model in order to meet the autocorrelation condition and fit the histogram, and maps real data by a projection function. For the projection function, we use the Cumulative Distribution Probability Function (CDPF), and the procedure is performed at each slice level. Our proposed model shows good performance in meeting the autocorrelation condition and fitting the histogram, and is found important in analyzing the performance of networks. In addiotion, we apply a smoothing method by which a periodic mean value. In general. the Quality of Service(QoS) depends on the Cell Loss Rate(CLR), which is related to the cell loss and a maximum delay in a buffer. Hence the proposed smoothing method can be used to improve the QoS.

  • PDF

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

A Buffer-based Video Quality Control Scheme for HTTP Adaptive Streaming in Long-Delay Networks (높은 지연을 갖는 네트워크에서 HTTP 적응적 스트리밍을 위한 버퍼 기반의 비디오 품질 조절 기법)

  • Park, Jiwoo;Kim, Dongchil;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.824-831
    • /
    • 2014
  • HTTP (Hypertext Transfer Protocol) Adaptive Streaming is gaining attention because it changes bitrates to adapt changing network conditions. Since HAS (HTTP Adaptive Streaming) client downloads the video data based on TCP (Transmission Control Protocol), it estimates incorrectly the available bandwidth and leads to an unnecessary video quality change in long-delay networks. In this paper, we propose a buffer-based quality control scheme in order to improve the service quality and smooth playback in the HAS. The proposed scheme estimates accurately the available bandwidth based on a modified streaming model that considers network delay. It also calculates the sustainability of the video quality to prevent an unnecessary quality change and determines the inter-request time on the basis of the buffer status. Through the simulation, we prove that our scheme improves the QoS (Quality of Service) of the HAS service and controls the video quality smoothly in long-delay networks.

Performance Analysis of IEEE 802.15.6 MAC Protocol in Beacon Mode with Superframes

  • Li, Changle;Geng, Xiaoyan;Yuan, Jingjing;Sun, Tingting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1108-1130
    • /
    • 2013
  • Wireless Body Area Networks (WBANs) are becoming increasingly important to solve the issue of health care. IEEE 802.15.6 is a wireless communication standard for WBANs, aiming to provide a real-time and continuous monitoring. In this paper, we present our development of a modified Markov Chain model and a backoff model, in which most features such as user priorities, contention windows, modulation and coding schemes (MCSs), and frozen states are taken into account. Then we calculate the normalized throughput and average access delay of IEEE 802.15.6 networks under saturation and ideal channel conditions. We make an evaluation of network performances by comparing with IEEE 802.15.4 and the results validate that IEEE 802.15.6 networks can provide high quality of service (QoS) for nodes with high priorities.

Profit-Maximizing Virtual Machine Provisioning Based on Workload Prediction in Computing Cloud

  • Li, Qing;Yang, Qinghai;He, Qingsu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4950-4966
    • /
    • 2015
  • Cloud providers now face the problem of estimating the amount of computing resources required to satisfy a future workload. In this paper, a virtual machine provisioning (VMP) mechanism is designed to adapt workload fluctuation. The arrival rate of forthcoming jobs is predicted for acquiring the proper service rate by adopting an exponential smoothing (ES) method. The proper service rate is estimated to guarantee the service level agreement (SLA) constraints by using a diffusion approximation statistical model. The VMP problem is formulated as a facility location problem. Furthermore, it is characterized as the maximization of submodular function subject to the matroid constraints. A greedy-based VMP algorithm is designed to obtain the optimal virtual machine provision pattern. Simulation results illustrate that the proposed mechanism could increase the average profit efficiently without incurring significant quality of service (QoS) violations.

Wavelength Division Multiplexing-Passive Optical Network Based FTTH Field Trial Test

  • Kim, Geun-Young;Kim, Jin-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, we have presented the results of Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) based fiber-to-the-home (FTTH) field trial test which was held in the city of Gwangju. We have implemented an injection locked Fabry-Perot Laser Diode (FP-LD) based WDM-PON system and reliably delivered Internet Protocol TV (IP-TV), networked Personal Video Recorder (N-PVR), High-Definition Video on Demand (HD-VoD), Education on Demand (EoD) and Internet service as FTTH service through the system during the field trial test. We have also verified that the WDM-PON system worked well to provide quality of service (QoS) guaranteed 100Mbps bandwidth per subscriber. Furthermore, we have presented network designing issues in Outside Plant (OSP) and Customer Premises Network (CPN) that should be overcome to efficiently deploy FTTH service. Finally, based on the field trial test results, we proposed FTTH service deployment strategies.

Periodic and Pseudo-static Channel Time Allocation Scheme for IEEE 802.15.3 High-Rate Wireless PANs (IEEE 802.15.3 고속율 무선 팬을 위한 주기적인 유사 정적 채널 시간 할당 방법)

  • Kim, Sun-Myeong
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.89-97
    • /
    • 2008
  • In wireless personal area networks (WPANs), the successful design of channel time allocation algorithm is a key factor in guaranteeing the various quality of service (QoS) requirements for the stringent real-time constraints of multimedia services. In this paper we propose a channel time allocation algorithm for achieving a high quality transmission and high channel error tolerance of MPEG stream in the IEEE 802.15.3 high-rate wireless PANs. Our algorithm exploits the characteristics of MPEG stream. When a new MPEG stream arrives, a DEV models it by the traffic envelope and delivers the traffic envelope to the piconet coordinator (PNC) along with the channel time request. The PNC performs channel time allocation according to the envelope. Performance of the proposed scheme is investigated by simulation and analysis. Our results show that compared to conventional scheme, the proposed scheme is very effective and provides a good performance under typical channel error conditions.

  • PDF

Exploring Support Vector Machine Learning for Cloud Computing Workload Prediction

  • ALOUFI, OMAR
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.374-388
    • /
    • 2022
  • Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.