
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

374

Manuscript received October 5, 2022
Manuscript revised October 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.10.50

Exploring Support Vector Machine Learning for Cloud Computing
Workload Prediction

OMAR ALOUFI1†
oofi@taibahu.edu.sa omar-fahad@live.com

Information Systems department, College of Computer Science and Engineering. Taibah University, Saudi Arabia

Summary
Cloud computing has been one of the most critical technology in
the last few decades. It has been invented for several purposes as
an example meeting the user requirements and is to satisfy the
needs of the user in simple ways. Since cloud computing has been
invented, it had followed the traditional approaches in elasticity,
which is the key characteristic of cloud computing. Elasticity is
that feature in cloud computing which is seeking to meet the needs
of the user’s with no interruption at run time. There are traditional
approaches to do elasticity which have been conducted for several
years and have been done with different modelling of
mathematical. Even though mathematical modellings have done a
forward step in meeting the user’s needs, there is still a lack in the
optimisation of elasticity. To optimise the elasticity in the cloud, it
could be better to benefit of Machine Learning algorithms to
predict upcoming workloads and assign them to the scheduling
algorithm which would achieve an excellent provision of the cloud
services and would improve the Quality of Service (QoS) and save
power consumption. Therefore, this paper aims to investigate the
use of machine learning techniques in order to predict the
workload of Physical Hosts (PH) on the cloud and their energy
consumption. The environment of the cloud will be the school of
computing cloud testbed (SoC) which will host the experiments.
The experiments will take on real applications with different
behaviours, by changing workloads over time. The results of the
experiments demonstrate that our machine learning techniques
used in scheduling algorithm is able to predict the workload of
physical hosts (CPU utilisation) and that would contribute to
reducing power consumption by scheduling the upcoming virtual
machines to the lowest CPU utilisation in the environment of
physical hosts. Additionally, there are a number of tools, which
are used and explored in this paper, such as the WEKA tool to train
the real data to explore Machine learning algorithms and the
Zabbix tool to monitor the power consumption before and after
scheduling the virtual machines to physical hosts. Moreover, the
methodology of the paper is the agile approach that helps us in
achieving our solution and managing our paper effectively.
Keywords:
 Cloud Computing; Optimising Quality of Service
(QoS); Resource management, Machine Learning.

1. Introduction

Cloud computing (CC) is a relatively recent advance
in technology which has changed the concept of computing
considerably. CC is defined by the U.S. National Institute

of Standards and Technology (NIST), as the pooling of
resources to be shared appropriately to meet the
requirements of users with respect to accessing resources,
storing data and processing data [1]. The NIST further
describes cloud computing as a frame or a model that
enables the universal pooling of computer resources, such
as storage, applications, services and shared data, All these
resources are made available and released with less effort or
interactions [2]. Accordingly, it is possible that many
groups, such as organisations, academia or industries, can
take advantage of the concept of cloud computing to
facilitate their work and the services they provide to the
end-user. In addition, QoS has become one of the key
pursuits of cloud computing. CC can meet users’
requirements and satisfy their needs while minimising the
provider’s costs for power consumption by applying such
approaches to resource management.

Resource management is considered one of the major
challenges in cloud computing because of the complexity
and heterogeneity of systems. According to Kumar and
Manoj [3], resource management is the method of
distributing demands, such as storage resources, for cloud
providers and cloud consumers. Cloud resource
management is also affected by massive interactions, some
of which are unpredictable, such as failure of the system.
Another challenge for cloud providers involves elasticity,
particularly that from a fluctuating large load. The decisions
on resource utilisation must be made using accurate
measurements of the physical and virtual resources needed
to distribute applications [3]. A cloud service provider tries
to fulfil the requirements of customers, but this requires
complex policies and decisions; resource management
requires optimisation of multiple objectives, such as load
balancing, energy usage, costs, utilisation of processors and
availability of machines.

Scheduling is about deciding how to allocate system
resources, such as Central Processing Unit (CPU), memory,
disk, storage, and network bandwidth, etc. It could be said
that scheduling has become one of the most significant
issues for cloud computing. The researchers in [4, p.16]
stated that ‘scheduling algorithms should order the jobs in a

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

375

way where balance between improving the performance
and quality of service and at the same time maintaining the
efficiency and fairness among the jobs’. Hence, resource
scheduling is about efficiently assigning jobs to be run on
machines. Cloud computing can embrace a vast amount of
data because of the existence of power computing, therefore,
the computation of algorithms will be performed faster with
this power computing because of MLs. Thus, ML assists
experts and developers in their jobs in the cloud instead of
their local machines. In this sense, ML is particularly useful
to improve the mechanism of resource allocation, optimise
the usage of resources and minimise the use of energy.
Therefore, the benefits of ML have attracted researchers and
participants to apply it to the cloud, such as in [5], where it
was concluded that the optimisation of resources could be
increased by implementing ML techniques. Clearly,
applying ML to resource allocation and task scheduling
contributes positively to meeting Service Level Agreements
(SLAs), including the Quality of Service (QoS), and reducing
power consumption.

Efficiently exploiting the elasticity of a cloud is critical
for the instantaneous provision and de-provision of
resources in cloud. it is essential to achieve high
performance in the cloud. However, workloads must be
predicted to avoid scaling delay which impact negatively on
QoS [6]. Previous studies have used two methods for auto-
scaling resources: proactive and reactive. The proactive
method applies ML techniques to predict upcoming
workloads to efficiently provision resources. Hence, to
improve the elasticity mechanisms in the cloud, ML
algorithms must be applied to predict workloads more
accurately and, subsequently, to assign them with the
scheduling algorithm. This allows for excellent and
efficient provisioning or de-provisioning of cloud resources,
improving QoS and minimising power consumption. CC,
by its nature, changes state frequently; therefore, exploring
ML algorithms to exploit elasticity supports the drive to
satisfy customers and minimise the total cost of power
consumption for cloud providers.

Additionally, in spite of the cloud computing is
considered as one of the solutions that assist users to meet
their requirements, CC has faced with some challenges,
which can be as obstacles in this technology. These
challenges are such as the waste of resources and energy
consumption which make the cloud providers pursue to find
the optimal solutions of resource management to meet the
requirements of users, efficiently. According to Kumar and
Singh in [7], the data centre needs to be scaled efficiently as
well as dynamic resource scaling and allocation policy.
Therefore, optimisation the scheduling of Virtual Machines
(VM’s) based on the prediction of the workload and energy
consumption is really required.

Predicting workloads is fundamental to provisioning
resources smoothly. Provisioning resources in the cloud to
accomplish different objectives, such as improving QoS and
minimising power consumption, has been broadly studied.
Researchers have tried to predict workloads using different
approaches; for example, the authors in [6] applied
mathematical models to predict demands to solve delays in
scaling regarding resource management.

Several studies is reviewed in this paper, to begin with,
Islam et al. [8], developed a prediction-based model for
resource management and strategy provision using neural
networks and linear regression. The aim of their model was
to solve the issue of delays in allocation resources by
anticipating clients' demands. They have approached ML
techniques with respect to time, applying two algorithms:
error correction neural network (ECNN) and linear
regression. They have justified using these algorithms
because they are effective for forecasting [8]. Their model
has showed promising results which revealed greater
success from using the neural network model with a sliding
window for estimating resource usage in the cloud.

In the same context of the author Islam's objectives [8],
Wang et al. [6] proposed a new trigger strategy for
provisioning resources to improve QoS and meet the user’s
needs as they appeared in an SLA that involved an
automatic-scaling mechanism. Wang et al. [6] has predicted
the workload by monitoring the data of CPU utilisation
using Aliyun VMs as tools. They have used the mean
absolute percentage error (MAPE) metric to evaluate the
results, which showed improved prediction accuracy and a
reduction of delays in the automatic scaling. However, even
though the mathematical modelling in that study was an
advanced step in provisioning resources, there was still a
need to implement ML techniques to predict the workload
and achieve QoS, and there was a need to improve the
accuracy of the prediction.

Furthermore, Bin et al. [9] tried to predict the precise
level of demand for cloud resources. They have considered
the planning of cloud capacity as a classification problem.
They also have proposed an integrated framework that
forecasts changing demands to minimise the cost of
providing cloud resources. They have evaluated their results
by applying PLR to two other traditional time series
segmentations—sliding window and bottom-up—and by
comparing weighted SVM with several classifiers, such as
the k-neighbours classifier. They showed that their model
could customise the degree of changing demands and the
importance of different types of changing trends to reduce
the overall cost of provisioning. The segmentation strategy
of a time series still has some limitations, such as threshold
selection and the unknown relationship between the
threshold and the degree of changing cloud demands. It may

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

376

also be possible to integrate regression and classification
approaches to increase the accuracy of the predictions.

Moreover, Kumar et al. [7] developed a model based
on ML techniques and neural networks and the time interval
used in their study was one minute. They have combined a
neural network with a self-adaptive differential evaluation
to predict demand, to improve QoS and to avoid any
violations of the SLA. Their model was also considered to
be an expert in its domain [7]. The researchers have
determined that their model reduced both the number of
violations of the SLA and operational costs. Their outcomes
indicated that the proposed approach in this research should
further explore ML techniques such as SVM while their
results showed higher accuracy in predictions.

Additionally, Montero et al. [13] observed the
problems of achieving QoS in the cloud domain, such as
long response time, particularly during high traffic loads
and fluctuating demands. They found that the SVM model
they used to predict the upcoming demand provided an
optimal and unique solution. This is because SVM is a
global solution, whereas artificial neural networks (ANNs)
might suffer from local minima as they mentioned in their
study. The researchers proposed a novel mechanism to
guarantee QoS that provided an optimal number of
resources during peak demands and decreased resource
over-provisioning to save power and decrease the total cost
of the infrastructure. Their study has used a time series
approach and forecasted using ML techniques (SVM). The
proposed mechanism in [13] was based on a proactive
(predictive) time series mechanism. Montero et al. [13]
forecasted workload based on historical observations of a
web server. Their proposed method estimated the optimal
resources needed to ensure QoS and reduce over-
provisioning. They have implemented an SVM technique
using different functions of kernel, such as a normalised
polynomial kernel and a polynomial kernel, and they also
have applied different configuration constraints to obtain
optimal results. However, the study showed a strong need
to apply ML (SVM) techniques to predict the workloads of
big data clusters such as Hadoop or Spark and implementing
these techniques in the private cloud.

The objectives of this paper are similar of Montero et
al. [13] which are to improve QoS and reduce the over-
provisioning of resources causing power consumption. This
paper also developed methods based on SVM techniques
to predict workloads of PHs to allocate the upcoming
demands efficiently to the suitable PHs in order to maintain
QoS and save power consumption.

2. Materials and Methods

The method has adopted several steps scientifically to
achieve the primary goals of this paper. Hence, this paper
investigates the ML techniques to schedule the upcoming
VMs and evaluate the performance and power consumption
of the proposed method. Therefore the paper used an agile
approach to complete the milestones and tasks of
experiments of this paper. The tasks involve direct
experiments, simulation, mathematical modelling and
monitoring technique. Hence, the agile methodology of this
paper will base on direct experiments, which need to have
an access to SoC to implement the experiments.

To begin with, direct experiments are used in paper to
implement several experiments on the real cloud, which
were SoC, to schedule the VMs based on the proposed
solution and other algorithms, which are benchmarks. In
this method, we can set up experiments to provide the
results of the implementations. Besides, in our paper, we
can use mathematical modelling to explain the behaviour of
the novel scheduling algorithm. This means that we could
use models to provide mathematical explanations of the
proposed scheduling algorithm. To conclude, a monitoring
technique is used to keep track of the results of the
experiments. In this paper, we monitored the experiments
by collecting the results to be discussed critically at the end
of each experiment. The monitoring technique involved
observing the change of power consumption with each
experiment. Consequently, agile methodology has followed
due to its benefits like its flexibility to manage the tasks and
provide support for delivering the subtasks of the work in
this paper regularly [10]. The agile methodology has been
defined as ‘a way of thinking about software development
which enables developers to accommodate changes while
developing a project’ [11, p.436]. As the initial steps, the
requirements of the paper were identified. After that, the
following steps were taken.

Firstly, data collection is one of the most important
tasks in this paper to make the correct prediction of the
workload of PHs. In this stage, the proposed method
collected data from physical hosts (PHs) of the SoC to be
analysed in the next phase. However, there was a need for
reliable and credible data to be used in the experiments of
this paper. Consequently, instead of collecting the data from
PHs on the SoC testbed, the public data from the Google
cloud datasets are downloaded to be analysed and
implemented in the paper's experiments which seek the
appropriate ML algorithms. Furthermore, Google datasets
are publicly available and widely used in research.
Therefore, Google’s Cloud 29-day usage datasets were
downloaded by following the steps in [12]. The second step
is data analysis, for which the paper used Microsoft Excel
and the WEKA tool. These were used to prepare the data

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

377

for the next phase: choosing the appropriate ML algorithms.
In addition, Tableau software is used in this paper to
visualise the data before and after implementing the
proposed method. Third, after collecting and analysing the
data, the relevant ML algorithms were identified, consistent
with the data format. Applying ML algorithms is an
essential step because of the high degree of accuracy
required since the results from later steps depend on
choosing the right ML algorithms. For this paper, SVM
techniques were chosen. The benefit of SVM is that the
solution is always unique and distinctive with reasonable
training times [13]. The fourth step was to design the
proposed solution based on the previous phases. Therefore,
our paper needed to access the SoC testbed to design the
proposed solution and set up many VMs to be used in the
experiments. Moreover, several PHs were identified based
on the proposed solution. We designed the novel algorithm
to be coded in java programming so it would be ready for
the next phase. Additionally, metrics were identified to
evaluate the proposed method. In this step, the PHs and
VMs were prepared for the next phase which is the
implementations of the experiments. Fifth, several
experiments were conducted. Consequently, implementing
these experiments was an essential step for determining the
effectiveness of the proposed solution of the paper. Besides,
several implementing experiments provided opportunities
to discuss the final results critically. The last step of the
paper was collecting the results of the experiments by
monitoring technique to be discussed. The monitoring
technique allowed us to evaluate the proposed method
against the benchmarks.

2.1 Datasets

2.1.1 Google datasets for PHs

Google datasets are publicly available and have been
used widely in the research domain of Google traces. Hence,
Google traces, in our paper, is used to predict the workload
of PHs correctly. Therefore, Google’s Cloud 29-day usage
datasets were downloaded by following the steps in [12].
The traces were generated on at 2014-11-18 09:58Z.

2.1.1 Dataset characteristics for PHs

This part analyses the datasets of PHs. Among the
Google datasets, the authors found that the task usage
dataset was closest to our interests in this paper because it
has CPU usage. A task usage dataset has 20 parameters;
nevertheless, in this paper, the authors consider only two
parameters: the start time and CPU utilisation. The
following tables illustrate the data characteristics of each
PH and its analysis in the WEKA tool.

Table 2.1: Dataset characteristics for PH1

Parameter
name

Description

Data
Type

Range
Interval

Start time Record of
the event

Integer

From
600000000 to

900000000
(microseconds) 5

minutes
CPU

sampled
Usage

The Usage
of CPU

Float

From zero to

0.481

Table 2.2: Analysis of the parameter (data) in the WEKA tool

Parameter Type Missing
Value

Unique

Start time Numeric

No

100%

CPU sampled
Usage Numeric

NO

55%

Table 2.3: Dataset characteristics for PH2

Parameter
name

Description

Data
Type

Range
Interval

Start time Record of
the event

Integer

From
150100000 to

180000000
(microseconds) 5

minutes
CPU

sampled
Usage

The Usage
of CPU

Float

From zero to

0.209

Table 2.4: Analysis of the parameter (data) in the WEKA tool

Parameter Type Missing
Value

Unique

Start time Numeric

No

100%

CPU sampled
Usage Numeric

NO

50%

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

378

Table 2.5: Dataset characteristics for PH3

Parameter
name

Description

Data
Type

Range
Interval

Start time Record of
the event

Integer

From
180100000 to

210000000
(microseconds) 5

minutes
CPU

sampled
Usage

The Usage
of CPU

Float

From zero to

0.436

Table 2.6: Analysis of the parameter (data) in the WEKA tool

Parameter Type Missing
Value

Unique

Start time Numeric

No

100%

CPU sampled
Usage Numeric

NO

63%

Table 2.7: Dataset characteristics for PH4

Parameter
name

Description

Data
Type

Range
Interval

Start time Record of
the event

Integer

From
210100000 to

240000000
(microseconds) 5

minutes
CPU

sampled
Usage

The Usage
of CPU

Float

From zero to

0.315

Table 2.8: Analysis of the parameter (data) in the WEKA tool

Parameter Type Missing
Value

Unique

Start time Numeric

No

100%

CPU sampled
Usage Numeric

NO

59%

2.2 The proposed method

Cloud computing architecture comprises three layers.
These layers are Software as a Service (SaaS), Platform as
a Service (PaaS), and Infrastructure as a Service (IaaS). The
proposed method is focusing on the IaaS layer, as shown in
Figure 3.2, which illustrates the cloud architectures.
However, the components of the proposed design method
are within the virtualisation layer, which is above the IaaS
layer, as shown in Figure 3.3, which illustrates the proposed
method. The components are as follows: a scheduler, which
is comprised of two components which are scheduling and
the ML-based prediction components, monitoring the
infrastructure, and VM manager. This paper focuses on
ML-based prediction because it is a new component in our
design solution. To begin with, the Monitoring
Infrastructure component is responsible for monitoring the
infrastructure resources to obtain the infrastructure data,
such as CPU utilisation. After that, the monitoring
Infrastructure component stores such data into the database.
Moreover, a scheduler component within the virtualisation
layer is responsible for where the VM is allocated. Then, the
scheduler component calls the VM manager component to
allocate VM according to the prediction of ML-based
prediction components. To end, the VM manager
component is responsible for interacting with the scheduler
component to decide whether the scheduler component
occurs or not.

2.2.1 ML-based prediction component

This component is used to generate a valuable model
to serve the objective of this paper. The valuable model is
derived from the volume of data or previous experience [14].
ML is the field that leverages historical volume data within
the clouds. By leveraging ML, the proposed solution would
use the historical data for mPH to apply SVM algorithms to
predict the CPU utilisation of PHs. The main focus of our
proposed solution is ML-prediction component. The ML-
prediction component is based on the SVM algorithm to
predict CPU utilisation. The data, which is used to train the
model of the SVM algorithm, is obtained from the database.
After that, the scheduler will schedule the nVM to the
appropriate mPH. This would contribute to the paper's
objectives, saving power consumption and achieving the
QoS.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

379

 Fig. 2.1 The cloud architecture.

 Fig. 2.2 The Proposed method.

2.2.2 Support Vector Machine (SVM)

This algorithm is used widely to accomplish
predictions, especially in time series forecasting. Vapnik
mentioned that, as cited by Flake et al. [15, p.271] ‘A
support vector machine (SVM) is a type of model that is
optimized so that prediction error and model complexity is
simultaneously minimized’. Additionally, SVM regression
showed promising findings to provision resources in the
clouds with actual data as well as presented high accuracy

in Montero et al. [13] works. Moreover, the data in this
paper is in time series; therefore, SVM regression is suitable
for this case. That is why the authors chose SVM regression
for our proposed solution. In this paper, SVM is trained with
Google dataset for t intervals as well as SVM algorithm
splits the dataset into two separate sets, a training set and a
test set. The authors applied the SVM algorithm by using
the Weka tool. The authors use the WEKA tool because it
has plenty set of ML algorithms which can be used to
extract the patterns of data [16]. Furthermore, the WEKA
tool has features that ease dealing with datasets, such as pre-
processing and visualizing data. Therefore, the authors used
this tool to deal with data effortlessly according to its
features and capabilities.

2.2.2.1 Model Metrics

The model of predictions (SVM) has several
evaluation metrics to measure the accuracy of predictions,
such as mean absolute error (MAE), mean squared error
(MSE), mean absolute percentage error (MAPE), and
direction accuracy (DA).

1- MAE is the evaluation metric used for the
regression model. This metric is the average error
in this model for all the instances in the test set [17].
In this paper, the instances in the test set are the
CPU utilisation.

2- MSE is the metric of the average squared error in
this model for all the instances in the test set [17].
The instances are the CPU utilisation values.

3- DA is a measure of the accuracy of prediction CPU
utilisation values. DA is the comparison of the
prediction direction to the actual direction [18].

2.2.3 The Heart of the Novel Algorithm

The VMs were allocated to the PH because the novel
algorithm knew in advance that the PH would accommodate
the upcoming VMs based on the CPU utilisation of PHs.
Therefore, the allocation is based on the minCPU among the
mPHs. The novel algorithm is designed as follows:

 Step 1: The scheduling algorithm is fed with predictions
of the CPU utilisations for t seconds for the mPH.

 Step 2: According to the ML-based prediction
component, the minCPU utilisation is checked for the
mPHs at t1, t2, t3, and t4. In. Then, the VM is scheduled
based on the predictions of CPU utilisation.

 Step 3: After knowing the minCPU of mPHs, the VM
requested is scheduled for the minCPU utilisation of the
mPH.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

380

2.2.3.1 The Novel Algorithm (Version 1)

The algorithm checked the CPU utilisation at t1, t2, t3,
and t4 seconds for mPH that we had on the SoC private
cloud testbed. Afterwards, we found the minCPU utilisation
among mPH at a specific time (t1, t2, t3, and t4 seconds).
For example, the most economical, which is the minCPU
utilisation, at t3 seconds was for mPH. In this case, after
allocating nVM to mPH, we considered that the workload
does not change. We repeated the same exercise at t4
seconds. This resulted in the discovery of the limitations of
the algorithm. As shown in the Table 3.9, nVMs were
allocated to the same mPHs. This means that the algorithm
does not consider the change of the workload when nVM
was allocated to mPH at t3 seconds. This encouraged us to
improve and further update this algorithm. The illustration
of the algorithm (version 1) is shown in Table 2.9.

Table 2.9: The illustration of the novel algorithm (version 1)

Host

/ VM

VM1

VM2

VM3

VM4

Minimum

CPU

utilisation

PH1 √ √
At 30

seconds

PH2
At 40

seconds

PH3 √
At 10

seconds

PH4 √
At 20

seconds

10

seconds

20

seconds

30

seconds

40

seconds

2.2.3.2 The Novel Algorithm (Version 2)

This algorithm found the minCPU utilisation at t1, t2,
t3, and t4 seconds for mPH that we had on the SoC private
cloud testbed. For example, the minCPU utilisation at t3
seconds was for mPH, as it happened for algorithm version
1. However, in this case, after allocating nVM to mPH, we
do not consider mPH to check again for the minCPU
utilisation at t4 seconds. This was because the workloads
are changing after allocating nVM to mPH. Again, we
repeated the same exercise at t4 seconds, but the first mPHs
were not counted in the check for the minCPU utilisation.
This resulted in solving the limitation of the algorithm in
version 1. As shown in Table 2.10, nVMs were allocated to
the mPHs at t1, t2, t3, and t4, respectively. This means that
the algorithm considers the change of workloads when

nVM is allocated to mPH at t seconds. The illustration of
the algorithm (version 2) is shown in Table 2.10.

Table 2.10: The illustration of the novel algorithm (version 2)

Host

/

VM

VM1 VM2 VM3 VM4 Minimum

CPU

utilisation

Ph1 √ X At 30

seconds

Ph2 √ At 40

seconds

Ph3 √ X X X At 10

seconds

Ph4 √ X X At 20

seconds

 10

seconds

20

seconds

30

seconds

40

seconds

Novel Algorithm Pseudocode

Input: mPH, nVM
Output: Allocate nVM to mPH, which has minCPU Utilisation among
mPH at times t1, t2, t3, and t4.
Input: List of mPH , List of nVM
For every VM allocation request
 Let utList be an empty list
 minIdx0
 minUt max number
For each PH in listOfmPH
 ut get the minCPU utilisation at time t for PH

if ut < minUt then
 minUtut
 minIdx index of the PH
 end if
 end for
 selectedPH get the PH at index minIdx from listOfmPH
 VM pop the first virtual machine from listOfnVMs
 assign VM to selectedPH

remove selectedPH from listOfmPH
if listOfmPH is empty or listOfnVMs is empty then

 exit for loop
 end if
end for

2.2.4 Metrics for the proposed solution

There are some metrics to evaluate the proposed
solution. They are the novel algorithm's efficiency, the
scheduling algorithm's complexity, and CPU utilisation.

2.2.4.1 Efficiency of the novel algorithm (version 2)

The assessment among benchmark algorithms is to
show the efficiency of the novel algorithm (version 2). The

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

381

benchmarks of the novel algorithm are matchmaking
scheduler of OpenNebula and the random scheduling
algorithm.

2.2.4.2 The complexity of the scheduling algorithm

The novel algorithm is assessed to see the complexity
of the scheduling algorithm, which is how long it takes to
run the novel algorithm (version 2).

2.2.4.3 CPU utilization

CPU Utilisation is the primary metric in our paper to
execute the experiments. The CPU utilisation for all PHs in
our environment is considered to make the prediction by the
SVM technique. Accordingly, the VM will be allocated to
the minimum CPU utilisation of PHs.

3. Experimental Design

3.1 High-Level System Architecture

Cloud computing systems have three models. In our
paper, the focus is on the infrastructure level. This level
includes several components, as shown in Figure 3.1, which
is taken from [19].

 Fig. 3.1 High-Level System Architecture.

3.1.1 Users/Brokers

The users or brokers received requests to create VMs
with their specifications, such as CPU utilisations. Then, the
resource manager deploys these VMs on the SoC private
cloud testbed.

3.1.2 Resource Manager

The resource manager is responsible for managing
client requests and the cloud infrastructure. Therefore, the
resource manager plays an essential role in managing the
demands and the availability of the resources on the cloud.
In addition, the resource manager acts as a coordinator

among various components, such as the VM scheduler and
SLA manager. Our paper focuses on two components: 1)
the VM scheduler allocates the requested VM to the PH on
the SoC private cloud, and 2) the SLA manager makes sure
the agreement between clients and cloud service providers
is met by avoiding any violations in the SLA. Overall, the
resource manager ensures that the system stays up and
running by improving its performance.

3.2 Virtual Machines (VMs)

A VM is a virtual representation of a physical machine
using software that has the capabilities to accommodate and
run an operating system [20]. Therefore, it can act like a
separate physical machine. VMs have become one of the
technologies that have been exploited in the context of
virtualisation. Therefore, in our paper, we dealt with VMs
to assign them to the lowest CPU utilisations of PHs.
Allocating the VMs to the PHs based on the proposed
solution would positively contribute to the objectives of our
paper. The proposed solution focused on providing high
QoS and saving power by forecasting workloads.

3.3 Physical Hosts (PHs)

In this paper, the SoC private cloud testbed consists of
several PHs. PHs are the underlying hardware resources of
the infrastructure of this private cloud. PHs, which
accommodate VMs, use hypervisor software to abstract the
infrastructure and create VMs. The creation of VMs was
completed using OpenNebula, which is a Virtual
Infrastructure Manager (VIM).

3.4 Introduction of the Proposed Solution

The proposed solution in our paper depends on
predicting the workload using the SVM technique. The
workload is the CPU utilisation of PHs. The proposed
solution, which has an ML-based prediction component,
would be implemented to predict the CPUs’ utilisation of
PHs. Therefore, the upcoming VMs will be allocated to an
appropriate PH, which meets the conditions of the proposed
solution, on the SoC private cloud testbed (cluster). At this
point, the proposed solution would consider power
consumption. This means identifying the server that would
accommodate the VM efficiently while saving power.
Therefore, the main component of the proposed design
solution is the resource manager. The resource manager will
manage the requests of users/brokers and manage
computing resources of PHs. In our paper, we assumed
several PHs out of the total PHs on the SoC private cloud
testbed because we have a limited number of hosts. The
resource manager collected the requests from the
users/brokers and created a new VM. Then, the VM
scheduler deployed the VM based on the proposed solution.
This means that the schedule of the VMs depends on the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

382

predictions of CPU utilisations of PHs. The allocation
algorithm chose the lowest CPU utilisation among the
available PHs to save power. Therefore, the role of our
proposed solution is to allocate the VM to the lowest CPU
utilisation of PHs to save power consumption while
providing QoS. Therefore, our solution aimed to provide
QoS and minimise power consumption to meet user
requirements and avoid any violations that could arise in the
SLA.

To evaluate the proposed solution, it would be better
to compare it with other algorithms that schedule VMs. First,
the basic algorithm used by OpenNebula was the
matchmaking scheduler. OpenNebula checked the
specifications of PHs, such as the CPUs, and then decided
which physical host could house the VM. Matchmaking is
a basic algorithm that tries to match the VM requirements
to what is available for them in a PH. The matchmaking
method is used in this paper as a benchmark for our
proposed solution. Second, a random algorithm allocates
VMs randomly to the PHs. The random method is
implemented to use the results as a benchmark for our
proposed solution. Finally, by assuming that the VM is
deployed, it is randomly allocated among the available PHs
on the SoC private cloud testbed.

3.4.1 Introduction of a Novel Algorithm

Before introducing the novel algorithm, it is
fundamental to mention that the window of prediction to
allocate the VM to the appropriate PH is in seconds. The
reason is that the records of Google dataset were a vast
number in a millisecond, and we also studied more
experiments to find optimal results in seconds. Furthermore,
in the proposed solution, we assume that we have:

1- nVM = number of VMs (VM1, VM2, VM3, and VM4).

2- mPH = number of physical hosts with dataset
predictions (PH1, PH2, PH3, and PH4).

3- minCPU = the minimum CPU utilisation for a PH
among mPH.

4- t = which is a specific time to be checked for CPU
utilisation (t1, t2, t3, and t4).

In our environment, several VMs are allocated to the PHs
on the SoC private cloud testbed based on different
scheduling algorithms. The CPU utilisation is considered to
be one of the most significant parameters that impact the
power consumption of servers [21]. Since our proposed
solution is limited to the number of PHs, we only consider
CPU utilisation in applying the novel algorithm. By
implementing the proposed solution, the VM is allocated to
the minCPU utilisation among the mPH at the specific time
(t1, t2, t3, and t4). The novel algorithm knew in advance
which server is with the minCPU utilisation for the next t

seconds. All of that occurred because we used the mPH
datasets. Google cloud datasets are used as data for mPH in
our design solution. The Google cloud datasets were
analysed, and applying SVM on these datasets. The paper
considers several datasets from Google traces for the mPH
where each dataset is in t interval.

4. Experimental Results

4.1 Implementation

4.1.1 SoC Testbed

The school of computing provides an SoC testbed as a
gateway to the University of Leeds. This testbed is used in
this paper to demonstrate the proposed solution and runs the
different algorithms of allocating VMs and use these results
as benchmarks to assess the novel algorithm. It can be
accessed by using the credentials of the University of Leeds
via the SSH protocol as “ssh usernam@csgate1.ac.uk” or
“ssh username@csgate1” as shown in Figure 4.1.
According to Ylonen et al. in [22, p.1] SSH is defined as
‘The Secure Shell (SSH) Protocol is a protocol for secure
remote login and other secure network services over an
insecure network’. Therefore, SSH provides a secure bridge
to interact remotely with resources of the SoC private cloud.
Regarding the SoC testbed, users can run different actions
on cloud resources, such as benchmark and novel
algorithms, after signing in successfully into the SoC
testbed via SSH. The benchmark and the novel algorithm
results will be assessed on the SoC testbed.

Fig. 4.1 SoC Testbed.

4.1.2 Monitoring Infrastructure

There are some tools which are used to monitor the
infrastructure of clouds, such as Zabbix. Zabbix is the
possible tool that would be used in this paper to collect the
data of PHs on the SoC private cloud testbed. This tool is
available on the School of Computing Cloud platform.
Zabbix is an open-source tool that can be used to monitor
networks, server monitoring, application monitoring, and
service monitoring [23]. Zabbix aimed to analyse and
monitor the status PHs. This tool is used to monitor the CPU
utilisation of PHs in order to be stored in the database. The
PHs on the SoC private cloud testbed are 14 PHs. The
details of these PHs can be seen in Appendix A. In this
paper, we assumed only 4 PHs out of 14 PHs on the SoC
private cloud testbed to be monitored for CPU utilisations.
Nevertheless, in our paper, instead of collecting the data of

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

383

the SoC private cloud testbed for 4 PHs, we would use the
data of Google datasets for these 4 PHs to implement the
proposed solution. Zabbix tool can be accessed from the
following address:

 https://csgate1.leeds.ac.uk:8443/zabbix/index.php.

We used the “sign in as a guest” option to have access to
the Zabbix monitoring system. The main dashboard of the
Zabbix monitoring system, as shown in Figure 4.2, is under
the option Monitoring. Zabbix monitoring system is used to
monitor the changes in workloads (CPU utilisation) in PHs
after allocating the VM. It can also be used to monitor the
power consumption for 4 PHs.

Fig. 4.2 Zabbix Monitoring System.

4.1.3 Virtual Machine (VM)

The VM is one of the most necessary parts of our
paper to perform the proposed solution. The proposed
solution schedule the VMs requested by users/brokers to
PHs. These VMs can be different templates which contain
details of the VM. The SoC private cloud testbed provides
several templates of the VMs, which could be used in our
paper, to be scheduled based on the proposed solution. In
this paper, the template of the VM is Debian Stretch
(Hadoop) x86_64 Base, with CPU="0.1" and
MEMORY="1024" Mb. The list of other templates in
OpenNebula is in Appendix B. In this paper, the VM will
be scheduled by the proposed system regardless of the type
of VM.

4.2.1 Implementation of the ML-based prediction
component

After collecting the CPU utilisation with the Zabbix
tool and storing it into a database, the SVM technique will
use such data to make the prediction of the upcoming
workloads of 4 PHs for the next 60 seconds. It is important
to mention that the window of predictions to allocate the
VMs to the appropriate PHs (among the 4 PHs) is 60

seconds. This dataset considered only two parameters for
scheduling the upcoming 4 VMs. Therefore, the paper
considers four datasets from Google traces for the 4 PHs,
where each dataset is in 5-minute intervals. In this paper,
SVM is trained with the Google dataset for a 5-minute
interval. The SVM algorithm splits the dataset into two
separate datasets as a training set and a test set. The training
sets in our paper are 80% of the datasets, and the remaining
is for the test set. The segmentation of data sets into 80%
and 20% shows better results for SVM models than other
segmentations, such as 70% for training and 30% for the
test set.

To implement the prediction of the CPU utilisation of
4 PHs, we implement that by using the WEKA tool. The
datasets in this tool must be prepared and in appropriate
formats to make the prediction correctly. Some steps must
be followed to prepare the datasets to make the datasets
ready for the ML-based prediction component.

Data preparation: the data must be cleaned, modified,
and adjusted to be well-suited for the WEKA tool. The
datasets were in microseconds which made the datasets in a
huge number of records. Therefore, we made the datasets
for each PH in seconds by assuming that the maximum
value for each of the microseconds records represents the
value of the seconds' records. By implementing this step,
we reduced the significant number of records to 300,
representing a 5-minutes interval.

Data preparation comprised two stages: cleaning data and
transforming the datasets to the format acceptable to the
WEKA tool. In the cleaning step, the CPU utilisation
parameter was cleaned from unneeded values or missing
values that might cause model metrics. In addition,
duplicate records were removed. To explain that, if the start
time and sampled CPU usage are the same on more than one
record, the duplicate record was removed. The
transformation step took the cleaned parameters (start time
and the CPU utilisation) and exported them into a format
that WEKA could read, such as .arff or .cvs files.

4.2.2 Implementation of the SVM

This section implements the SVM algorithm to predict
the next 60 seconds of each PHs while the training set is in
240 seconds. Therefore, we use Tableau software to
visualise the actual CPU utilisation and prediction one. We
also present the different segmentations of training and test
sets, and we learned that better results occurred when 70%
was used for training and 30% for testing. Therefore, we
outline two scenarios for implementing SVM out of several
scenarios. Different scenarios have been done, and from
these scenarios, we find the better results as follows:

1- The dataset is applied in the WEKA tool as a
training set that includes 80% of the dataset and a

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

384

test set with 20%. The results of the model with
metrics are shown in Table 4.1 and illustrated in
Figure 4.3.

Table 4.1: The results of the experiments for 80% and 20%

Filename PH2

Instances 300

Execution yes

Number of training records 240

Number of predict records 60

MAE 0.0337

DA 45.7627
MAPE 451.2559

 Figure 4.3: The 80% training and 20% test set.

2- The WEKA tool is fed with the datasets into two
sets: a training set that includes 70% of the dataset
and a test set with 30%. The outcomes of the model
SVM with metrics are shown in Table 4.2 and
illustrated in Figure 4.4.

 Table 4.2: The results of the experiments for 70% and 30%

Filename PH2

Instances 300

Execution yes

Number of training records 240

Number of predict records 60

MAE 0.0283

DA 55.0562
MAPE 490.7062

4.2.2 Implementation of the Novel Algorithm (version
2)

Figure 4.4: The 70% training and 30% test set

The scheduling component relies on the results of
prediction workloads. This component plays an important
role in scheduling the VM to PH. This section presents the
details of the steps and implementations of the novel
algorithm. The steps were:

1- The scheduling algorithm checks the minCPU
utilisation at 10, 20, 30, and 40 seconds for mPHs,
based on the prediction of the ML-based prediction
component.

2- The scheduling algorithm decides which PH will
host the VM at 10 seconds. The same will happen
at 20, 30, and 40 seconds.

3- The VM manager is called to allocate VM based
on the results of Step 1 (the proposed system).

This means that the algorithm checks the minCPU
utilisation at 10, 20, 30, and 40 seconds for 4 PHs in our
environment, which is the SoC private cloud. For instance,
the minCPU utilisation at 30 seconds was for PH3. In that
case, the scheduling algorithm does not consider PH3 to
check again at 40 seconds since the workload is changing
after assigning VM3 to PH3. To explain that the algorithm
does not check the minCPU utilisation after allocating VM.
To implement the algorithm in SoC cloud testbed, we
assumed that the snip of the code in Figure 4.4 was to
implement the proposed solution.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

385

Fig. 4.5: Allocating VM to the lowest CPU utilisation

4.2.3 Technical Evaluation

In this section, we will present the technical evaluation
of our proposed solution and benchmark results. This
section will discuss the results of the proposed solution,
which takes place on the SoC private cloud testbed.
Additionally, the benchmark results will be discussed in
comparison with the novel algorithm to show the
differences between them and their effectiveness.

4.2.4 Scheduling VMs to PHs

For all experiments, we recorded the power
consumption for the 4 PHs before and after hosting 4 VMs.
Moreover, all experiments were subjected to the time that it
took to schedule the 4 VMs to 4 PHs. In this paper, we
performed several experiments to schedule 4 VMs to the 4
PHs, based on the benchmarks and novel algorithm.

4.2.5 Benchmarks Evaluation

The first experiment was a benchmark for the novel
algorithm. It scheduled VMs using a matchmaking
scheduler, which was provided by OpenNebula. For this
experiment, the time it took to allocate the 4 VMs to the 4
PHs was considered as the standard for evaluating the
complexity of this algorithm. We also considered power
consumption. This algorithm took different times to
schedule the VMs requested by users/brokers. Furthermore,
the algorithm did not count the minimum CPU utilisation of
the PHs; therefore, the 4 VMs were allocated to the same
PH 4, which was host ID 21 on the SoC private cloud
testbed. This meant that the power consumption for PH 4 on
this experiment was the highest among the PHs. The results
of the first experiment are shown in Table 4.3. Figure 4.6
presents the power consumption during this experiment.
Appendix E shows the 4 VMs allocated to the same PH,
which was PH 4.

The second experiment was to schedule the 4 VMs to
4 PHs randomly. In this experiment, we also evaluated the
complexity of the random algorithm to schedule 4 VMs to
the 4 PHs. We also studied the power consumption for the

4 PHs. This algorithm presented changed times to schedule
the 4 VMs. Moreover, this algorithm did not check the
minimum CPU utilisation of the 4 PHs. Therefore the 4
VMs were allocated to the 4 PHs randomly on the SoC
private cloud testbed. This resulted in more power
consumption, and it might allocate the VM to the highest
CPU utilisation of PHs. This contradicts our novel
algorithm, which seeks to find the lowest CPU utilisation to
allocate the VM. The power consumption in this experiment
for the PHs was diverse and it could not be predicted. The
results of the second experiment are shown in Table 4.3.

Table 4.3: The results of the experiments of the random algorithm

Algorithm: Random Algorithm

Host/
VM

VM
1

V
M2

VM
3

V
M4

Minimu
m CPU
utilisati

on

Power
consum

ption Time to allocate
VM in millisecond (ms)

Ph1 =
host
ID 9

√ √ √ Not
Conside

red

118
Watts 3000

ms
30
89
ms

284
1

ms

Ph2
Host
ID 1

 Not
Conside

red

110
Watts

Ph3
Host
ID 8

 Not
Conside

red

110
Watts

Ph4 =
Host
ID 21

 √ Not
Conside

red

112
Watts

 30
83
ms

Avera
ge

3003.25 ms
Total
Power

consum
ption

Stand
ard

Devia
tion

115.540

Time 10
seco
nds

20
seconds

30
seconds

40
secon

ds

450
Watts

4.2.6 Evaluation of the novel algorithm

The novel algorithm was used in the last experiment to
prove its efficiency over the previous ones. The heart of the
novel algorithm was to schedule the requested VM to the
minimum CPU utilisation among the 4 PHs. That is, if VM
1 was requested, the algorithm finds the minCPU utilisation
at 10 seconds for 4 PHs to schedule the VM. The same
exercise used on the rest of the VMs. For example, VM 2
was requested by users/brokers, and the novel algorithm
allocated the VM 2 to the minimum CPU utilisation at 20
seconds of the rest of PHs. We hypothesised the complexity

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

386

of novel algorithm to schedule 4 VMs to the 4 PHs was the
most efficient compared to the random and matching
algorithms due to the promising results of the novel
algorithm. Hypothetically, the results showed the quickest
scheduling VMs to PHs compared to the benchmarks. This
algorithm allocated the upcoming VM to the known PH,
and this would contribute to saving power consumption by
avoiding allocating VMs to the same PHs. This means that
the novel algorithm considered the power consumption
while seeking QoS. Therefore, we looked at the power
consumption for the 4 PHs in this experiment, and
hypothetically, the power consumption was the most
efficient one compared to the results of the benchmarks.
The results of the novel experiment are presented in Table
4.4.

Table 4.4: The results of the experiments of the novel
algorithm

Algorithm: The novel algorithm
Host/
VM

VM1 VM2 VM3 VM4 Minim
um

CPU
utilisati

on

Power
consum

ption Time to allocate
VM in millisecond (ms)

Ph1 =
host
ID 9

 √ Consid
ered

112
Watts 1258

ms
Ph2 =
host
ID 1

 √ Consid
ered

112
Watts 1261

ms
Ph3 =
host
ID 8

√ Consid
ered

112
Watts 1267

ms
Ph4 =
host

ID 21

 √ Consid
ered

112
Watts

1252
ms

Avera
ge

1259.5 ms
Total Power
consumption Stand

ard
Deviat

ion

6.245

Time 10
seco
nds

20
seco
nds

30
seco
nds

40
seco
nds

448 Watts

4.2.7 VM Scheduling Times and Power
consumption

Scheduling 4 VMs to 4 PHs went through three
experiments to provide the results and prove the efficiency
of the novel algorithm. As we can see in Table 4.6, the
scheduling time for every algorithm was different, and the
power consumption also was different for each algorithm.
First, the Matchmaking scheduler By OpenNebula took just

under 3 seconds, on average, to schedule 4 VMs to the 4
PHs, and its power consumption was the highest, at 456
Watts, compared to the other algorithms. This means saving
power consumption, in this case, will not be considered.
Second, the random algorithm took an average of just over
3 seconds to schedule the upcoming 4 VMs to the 4 PHs,
and power consumption was different each time. Even
though the random algorithm used less power than the
matchmaking algorithm, it could be the worst option by
showing more power consumption. In this experiment, the
power consumption was 450 Watts which was less than in
the first experiments. Concurrently, power consumption
was more than the novel algorithm. Third, the novel
algorithm showed promising results compared with the
benchmarks. This algorithm was the fastest one to schedule
the upcoming VMs to PHs. The reason is that it had a
component to predict the workload, which is CPU
utilisation of PHs for the next 60 seconds. In addition,
power consumption was the lowest among the scheduling
algorithms, at 448 Watts. Our novel algorithm showed the
best performance compared to the other experiments and
reached the minimum power consumption among all the
experiments. Finally, since the novel algorithm showed
better results compared with the benchmarks, we would
recommend using ML techniques for provisioning cloud
computing instead of traditional methods. From the
literature review and our experiments, the promising results
of the ML techniques would enhance managing data centres
by ensuring that the QoS and saving power consumption are
achieved optimally. To conclude the experiments, Table 4.6
compares the results of the experiments.

This section described the environment of the
proposed solution and it outlined the preparation of data to
be implemented on the WEKA tool. The benchmarks were
presented to assess the efficiency of the novel algorithm.
The novel algorithm showed optimal results in terms of
ensuring QoS and saving power. Tables and figures were
presented to demonstrate the results for each algorithm.
Table 4.5 shows that the novel algorithm provided optimal
results in scheduling the VMs to PHs by using an ML
algorithm.

Table 4.5: The results of all the experiments

Scheduling
Algorithm

Average
time

Standard
deviation

Power
consumption for

scheduling 4
VMs

Matchmaking
scheduler By
OpenNebula

2790.75
ms

24.76 456 Watts

Random 3003.25
ms

115.540 450 Watts

Novel algorithm 1259.5
ms

6.245 448 Watts

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

387

5. Comparison with the previous methods

In this section, the results of the paper are compared with
related work, which was in the literature review. This comparison
of results aims to evaluate the achievements of this paper and how
these achievements contribute to QoS and saving power. Many
researchers have studied ML techniques to predict workload.
However, there was a need for further investigation to explore ML
algorithms and implement those algorithms in a real cloud data
centre. In the literature review, we found that the results of
previous efforts were promising for finding ML techniques and
implementing them in real clouds. For example, Islam et al. [8]
had promising results when they used ML algorithms to predict
the workload. Their results showed how many resources would be
used in clouds. These results were an important key for further
studies. They noted that it could be possible to accommodate other
ML methods to predict the workload for CPU utilisation by SVM.
Therefore, our paper with novel algorithms used Google datasets
for CPU utilisation to conduct the experiments with real data –
meaning operating in a real cloud – to see how our algorithms with
SVM worked. The results of our paper were promising in terms of
performance and saving power for PHs.

Bin et al. [9] and Montero et al. [13] have made predictions about
using the ML algorithm, which was using SVM with different
platforms and data. Bin et al. [9] and Montero et al. [13]
contributed in achieving the QoS, and Montero et al. [13] also
reduced over-provisioning, which was necessary with respect to
power consumption. Evaluating our paper against the results of
Bin et al. in [9] and Montero et al. [13], we found that our work
presented a direct contribution to estimating resource usage for the
next 60 seconds. From our results, our work sought to achieve QoS
and not neglect power consumption.

Finally, the points listed below show the contributions of our work
and compare our work with the research discussed in the literature
review. In addition, Table 5.1 provides the results for related
works.

 The proposed method has used real data, which were
Google dataset traces. In comparison, previous works
used different data.

 The proposed method has investigated ML algorithms
to find one appropriate for implementation in a real
cloud with a small time unit. We found in some previous
works intended to use SVM with big data and different
time units.

 The proposed method has monitored the power
consumption for experiments by using the Zabbix tool.

 The metrics of The proposed method have accurately
shown the results of ML techniques.

 The results of the proposed method proved its
effectiveness in scheduling the VMs to the PHs, which
had the lowest CPU utilisation among PHs.

 6. Conclusion and Future works

This paper highlights cloud computing topics and trends. The
paper also demonstrates the importance of using ML techniques
for scheduling VMs, while using less power than occurs with
traditional scheduling. Therefore, scheduling the upcoming VMs
based on the proposed solution has been shown to achieve the
primary goals of this paper. The proposed solution used real data
from Google to implement ML techniques. The proposed solution
is based on scheduling the VMs to the lowest CPU utilisation on a
cloud testbed.

Moreover, this paper analysed several papers in this area to
identify appropriate ML techniques and analyses the methods used
in those papers. Based on that research, the paper designed the
proposed solution to implement several experiments and compare
the findings to benchmarks. These experiments were implemented
to evaluate the effectiveness of the proposed solution on the SoC

Table 5.1: Results compared with related research
of

criteri
a

Criteri
a /

Paper

Isla
m et
al.

[18]

Wan
g et
al.
[1]

Bin
et al.
[19]

Kum
ar et
al.
[2]

Monter
o et al.

[6]

Our

propos
ed

metho
d

1

Predict
workload

which
was the

CPU
utilisatio

n

√ √ X X X

√

2
ML

techniqu
es

√ X √ √ √

√

3

Promisin
g results
related to

QoS

X √ √ √ √

√

4

Contribut
ions in
Power

consump
tion

X X X √ √

√

5

Monitor
power

consump
tion

before
and after
schedulin

g VMs

X X X X √

√

6

Identify
the trade-

off
between
performa
nce and
energy

X X X X X

√

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

388

testbed. The benchmarks in this paper were the matchmaking
scheduler by OpenNebula and a random algorithm. These
benchmarks were used to evaluate the novel algorithm proposed
in this paper.

Therefore, this paper has studied and investigated ML
techniques in the SoC testbed to evaluate their performance and
energy efficiency. Moreover, the paper tested the performance of
the proposed solution by using real data from the Google trace
dataset, and it analysed the data to be implemented with the ML
techniques of the paper using SVM regression.

The results are promising and vital to cloud providers to
support them in achieving the QoS for their customers and
reducing power consumption. By reducing the amount of power
wasted, the total cost of power consumption in data centres will be
reduced. Accordingly, this paper recommends further work in this
area to investigate additional machine learning techniques to be
used in real clouds or in edge computing environments. The goal
is to better management of cloud data centres and edge computing
environments.

Work that builds on this paper can be in different areas and
sections. They could be further explored using our experiments
and parameters. They are:

 Different ML algorithms: in this paper, we used the ML
algorithm SVM. Therefore, we could investigate other
ML algorithms such as linear regression and Naïve
Bayes (NB). In addition, we could further investigate
SVM regression by changing the parameters of the
algorithm to find the appropriate factors for the equation
of SVM regression.

 Different datasets: the experiments in this paper were
done with the Google trace dataset. Therefore, we could
implement our work with different datasets such as
Alibaba open dataset or dataset of Amazon cloud.
Moreover, such work could be done on the private
clouds of organisations that have their own datasets.

 Scalability of the algorithm: the evaluation of our paper
was limited to scheduling 4 VMs to 4 PHs. The
scalability of our paper was one of the critical points, as
it raises the question of how our algorithm could be
scaled to schedule, for example, 1000 VMs to the cloud.

 Memory usage: as is mentioned in the limitation section
(section 5.4), this work considered only CPU utilisation
as the workload. Therefore, we could investigate further
SVM regression for CPU and memory usage as the
upcoming workloads.

 Edge environments: our paper was conducted for use in
the real cloud. We could investigate furthermore how
our solution functions in an edge computing
environment.

References

[1] Badger, M.L., Grance, T., Patt-Corner, R. and Voas, J.M. Cloud
Computing Synopsis and Recommendations. National Institute of
Standards & Technology, 2012, pp. 1-81.

[2] Mell, P. and Grance, T. The NIST definition of cloud computing.
Special Publication 800-145. Gaithersburg: National Institute of
Standards and Technology. 2011, pp.1-7.

[3] Kumar, E.M. Cloud Computing in Resource Management.
International Journal of Engineering and Management Research
(IJEMR). 2018, 8(6), pp.93-98.

[4] Kaur, D. and Sharma, T. Scheduling Algorithms in Cloud Computing.
International Journal of Computer Applications. 2019, 975, pp.16-
21.

[5] Buyya, R., Srirama, S.N. and Bahsoon, R. A Manifesto for Future
Generation Cloud Computing. 2018, pp.1-51.

[6] Hu, Y., Deng, B., Peng, F. and Wang, D. Workload Prediction for
Cloud Computing Elasticity Eechanism. In: 2016 IEEE International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA):
IEEE, 2016, pp.244-249.

[7] Kumar, J. and Singh, A.K. Workload prediction in cloud using
artificial neural network and adaptive differential evolution. Future
Generation Computer Systems. 2018, 81, pp.41-52.

[8] Islam, S., Keung, J., Lee, K. and Liu, A. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Generation
Computer Systems. 2012, 28(1), pp.155-162.

[9] Xia, B., Li, T., Zhou, Q.-F., Li, Q. and Zhang, H. An Effective
Classification-based Framework for Predicting Cloud Capacity
Demand in Cloud Services. IEEE Transactions on Services
Computing. 2018, pp.1-13.

[10] Flora, H.K. and Chande, S.V. A Systematic Study on Agile Software
Development Methodologies and Practices. International Journal of
Computer Science and Information Technologies. 2014, 5(3),
pp.3626-3637.

[11] Uikey, N. and Suman, U. Tailoring for agile methodologies: A
framework for sustaining quality and productivity. International
Journal of Business Information Systems. 2016, 23(4), pp.432-455.

[12] Reiss, C., Wilkes, J. and Hellerstein, J.L. Google cluster-usage traces:
format+ schema, 2011.

[13] Moreno-Vozmediano, R., Montero, R.S., Huedo, E. and Llorente,
I.M. Efficient resource provisioning for elastic Cloud services based
on machine learning techniques. Journal of Cloud Computing. 2019,
8(1), p.5.

[14] Alpaydin, E. Introduction to machine learning. Cambridge: MIT
press, 2020.

[15] Flake, G.W. and Lawrence, S. Efficient SVM Regression Training
with SMO. Machine Learning. 2002, 46(1), pp.271-290.

[16] Markov, Z. and Russell, I. An introduction to the WEKA data mining
system. ACMSIGCSE Bulletin. 2006, 38(3), pp.367-368.

[17] Sammut, C. and Webb, G.I. eds. Encyclopedia of Machine Learning.
Mean absolute error. Boston, MA: Springer US, 2010.

[18] Usha, T. and Balamurugan, S.A.A. Seasonal Based Electricity
Demand Forecasting Using Time Series Analysis. Circuits and
Systems. 2016, 7(10), pp.3320-3328.

[19] Djemame, K. “Cloud Resource Management and Scheduling”.
COMP580 Cloud Computing. University of Leeds, 2020.

[20] Djemame, K. “Introduction to Cloud Computing: Enabling
Technologies and Distributed System Models (2)”. COMP580 Cloud
Computing. University of Leeds, 2020.

[21] Sun, X., Ansari, N. and Wang, R. Optimizing Resource Utilization
of a Data Center. IEEE Communications Surveys & Tutorials. 2016,
18(4), pp.2822-2846.

[22] Ylonen, T. and Lonvick, C. The secure shell (SSH) protocol
architecture. RFC 4251. 2006, pp.1-29.

[23] Anon 2020. Server monitoring. Zabbix.com. [Online]. [Accessed 24
July 2020]. Available from:
https://www.zabbix.com/server_monitoring.

