• Title/Summary/Keyword: quality limit

Search Result 1,217, Processing Time 0.03 seconds

A Study on the Warning Limit of Statistical Control Chart by the Heuristic Approach (휴리스틱접근법(接近法)에 의한 관리도(管理圖)의 경고한계선(警告限界線)에 관한 연구(硏究))

  • Gang, Hyo-Sin
    • Journal of Korean Society for Quality Management
    • /
    • v.12 no.2
    • /
    • pp.15-24
    • /
    • 1984
  • Since W.A. Shewhart (1931) developed the quality control method using the control chart, many theoretical and empirical works about such an analytical method have been done. However there are two major methods relating to the control chart analysis; the conventional 3 sigma control method and the warning limit method which has been suggested as a modification of the former. The conventional 3 sigma method requires to take a remedial action only when a quality characteristic is beyond the control limit (3 sigma). However, once a quality characteristic is over the control limit, searching and repairing an assignable cause requires time consuming job and high costs. Therefore if we set the warning limit between the central line and the control limit, we will be able to take remedial measures before too late. In spite of its advantage, much attention has not been paid to use the control chart with warning limit in Korean industries. The main object of this study is to examine improvement of quality and productivity when the control chart with warning limit is used.

  • PDF

Economic Selection of the Lower Limit and the Process Mean for a Continuous Production Process (연속생산공정에서 규격하한과 공정평균의 경제적 설정)

  • Hong, Sung-Hoon;Lim, Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.20-32
    • /
    • 1995
  • This paper is concerned with the economic selection of both the lower limit and the process mean for a continuous production process. Consider a production process where items are produced continuously. All of the items are subject to acceptance inspection. The items for which the measured values of the quality characteristic are larger than the lower limit are accepted, and those smaller than the lower limit are rejected and excluded from shipment. The process mean may be set higher to reduce the costs incurred by imperfect quality. Using a higher process mean, however, results in a higher production cost when production cost is an increasing function of the quality characteristic. Assuming that the quality characteristic is normally distributed with known variability, cost models are constructed which involve production cost, cost incurred by imperfect quality, rejection cost, and inspection cost. Methods of finding optimal values of the lower limit and the process mean are presented and numerical examples are given.

  • PDF

Determination of Control Limits of Conditional Variance Investigation: Application of Taguchi's Quality Loss Concept (조건부 차이조사의 관리한계 결정: 다구찌 품질손실 개념의 응용)

  • Pai, Hoo Seok;Lim, Chae Kwan
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.467-482
    • /
    • 2021
  • Purpose: The main theme of this study is to determine the optimal control limit of conditional variance investigation by mathematical approach. According to the determination approach of control limit presented in this study, it is possible with only one parameter to calculate the control limit necessary for budgeting control system or standard costing system, in which the limit could not be set in advance, that's why it has the advantage of high practical application. Methods: This study followed the analytical methodology in terms of the decision model of information economics, Bayesian probability theory and Taguchi's quality loss function concept. Results: The function suggested by this study is as follows; ${\delta}{\leq}\frac{3}{2}(k+1)+\frac{2}{\frac{3}{2}(k+1)+\sqrt{\{\frac{3}{2}(k+1)\}^2}+4$ Conclusion: The results of this study will be able to contribute not only in practice of variance investigation requiring in the standard costing and budgeting system, but also in all fields dealing with variance investigation differences, for example, intangible services quality control that are difficult to specify tolerances (control limit) unlike tangible product, and internal information system audits where materiality standards cannot be specified unlike external accounting audits.

The improvement of Quality of Observed Values II ${\sim}$Detection Limit${\sim}$

  • Maruyama Yukio;Miyazu Takashi
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.378-383
    • /
    • 1998
  • Needless to say, the importance of the quality of observed values shall be emphasized in the field of 'TQM', because, the first step of 'TQM' should be some data - observed values. Usually, meaning of the quality of observed values should be, a) accuracy (trueness and precision), b) detection limit, c) cost and so on. However, the authors will describe mainly on b), in this paper. The definitions of technical terms related to 'Detection Limit' are defined in ISO l1843-1 Capability of detection - Part1:Terms and definitions (1998). The most important terms extracted from the above standard are shown in the following table. The application of the 'Detection Limit' to the actual measurement is discussed in this paper.

  • PDF

Determination of Optimum Process Mean and Screening Limit for a Production Process Based on Two Correlated Variables (2개의 상관변수를 이용한 생산공정의 최적 공정평균 및 경사기준값의 설정)

  • 이민구
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.3
    • /
    • pp.155-164
    • /
    • 2000
  • This paper considers the problem of determining the optimum proccss mean value of the quality characteristic of interest, and the screening limit for two correlated variables under single-stage screening. In the single-stage screening, inspection is performed on two correlated variables which are correlated with the quality characteristic of interest. Model is constructed which involves selling price, production, inspection, and penalty costs. Method for finding the optimum process mean and screening limit are presented when the quality characteristic of interest and the correlated variables are assumed to be jointly normally distributed. A numerical example is presented and numerical analysis is performed to compare the proposed screening based on two screening variables with screening based on one screening variable.

  • PDF

Determination of the Optimal Process Mean and Upper Limit with considering the rpm(rate per minute) (rpm 변화를 고려한 최적의 공정 평균과 상한 규격의 결정)

  • 송우복;안광일;김성집
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.61-73
    • /
    • 1998
  • The quality control literature contains a substantial number of articles concerned with how to optimally choose control limits in order to minimize production cost. The purpose of the this study is to determine the economic setting for the process mean of an industrial process. In this study it is assumed that the lower control limit is set by government regulations and the u, pp.r limit and process mean are chosen based on economic considerations. Much research has been conducted on this problem under the condition of the fixed rpm(rate per minute). However a variance can be increased in proportion to the level of rpm and the increase of the variance can change the optimal process mean. Therefore, it is desirable to determine both the process mean and the level of rpm simultaneously. In this paper, a mathematical model is presented which considers the u, pp.r limit and the rpm as variables.

  • PDF

Diagnosis of Thickness Quality Using Multivariate Statistical Analysis in Hot Finishing Mill

  • Kim, Heung-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.3-116
    • /
    • 2001
  • A diagnosis methodology for thickness quality in hot finishing mill is proposed based on multivariate statistical analysis. The thickness of hot strip is a key quality factor that is measured by x-ray thickness gauge. Currently, the thickness quality is guaranteed by upper and lower limit of thickness deviation from target thickness. But if any over-limit is occurred, there is no in-line method to identify the causes. In this paper, many parameters are extracted from the thickness deviation signal such as mean deviation(top, middle, tail), rms deviation(top, middle, tail) and peak deviation(top, middle, tail) as time domain parameters ...

  • PDF

Developing a Web-based System for Computing Pre-Harvest Residue Limits (PHRLs)

  • Chang, Han Sub;Bae, Hey Ree;Son, Young Bae;Song, In Ho;Lee, Cheol Ho;Choi, Nam Geun;Cho, Kyoung Kyu;Lee, Young Gu
    • Agribusiness and Information Management
    • /
    • v.3 no.1
    • /
    • pp.11-22
    • /
    • 2011
  • This study describes the development of a web-based system that collects all data generated in the research conducted to set pre-harvest residue limits (PHRLs) for agricultural product safety control. These data, including concentrations of pesticide residues, limit of detection, limit of quantitation, recoveries, weather charts, and growth rates, are incorporated into a database, a regression analysis of the data is performed using statistical techniques, and the PHRL for an agricultural product is automatically computed. The development and establishment of this system increased the efficiency and improved the reliability of the research in this area by standardizing the data and maintaining its accuracy without temporal or spatial limitations. The system permits automatic computation of the PHRL and a quick review of the goodness of fit of the regression model. By building and analyzing a database, it also allows data accumulated over the last 10 years to be utilized.

  • PDF

Determination of Optimal Mean Value and Screening Limit for a Production Process with Logistic Function (로지스틱 함수를 갖는 생산공정에 대한 최적공정평균 및 스크리닝 한계선의 결정)

  • Hong, Sung Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Individual items are produced continuously from an industrial process. Each item is checked to determine whether it satisfies a lower screening limit for the quality characteristic which is the weight of an expensive ingredient. If it does, it is sold at a regular price; if it does not, it is reprocessed or sold at a reduced price. The process mean may be adjusted to a higher value in order to reduce the proportion of the nonconforming items. Using a higher process mean, however, may result in a higher production cost. In this paper, the optimal process mean and lower screening limit are determined in situations where the probability that an item functions well is given by a logistic function of the quality characteristic. Profit models are constructed which involve four price/cost components; selling prices, cost from an accepted nonconforming item, and reprocessing and inspection costs. Methods of finding the optimal process mean and lower screening limit are presented and numerical examples are given.

Optimum Mean Value and Lower Limit under a Quadratic Loss Function (이차손실함수 하에서 최적 공정평균 및 규격하한)

  • Hong, Sung-Hoon;Choi, Sung-Il;Lim, Hoon;Pan, Jae-Suk
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.4
    • /
    • pp.194-203
    • /
    • 2000
  • This paper is concerned with an economic selection of both the process mean and the lower limit for a continuous production process with the quadratic loss function. It is assumed that the quality characteristic is normally distributed with a known variability. A profit model is developed which involves selling price, production cost, reprocessing cost and the cost which is incurred by imperfect quality. Methods of finding optimum values of the process mean and the lower limit are presented, and a numerical example is given.

  • PDF