• Title/Summary/Keyword: quadrilateral elements

Search Result 122, Processing Time 0.022 seconds

Analysis of Anisotropic Folded Structures using Triangular and Quadrilateral Elements (3절점 및 4절점 요소를 이용한 비등방성 절판 구조물의 해석)

  • Yoo, Yong-Min;Yhim, Sung-Soon;Chang, Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • This study deals with displacement analysis of anisotropic folded structures with triangular elements and quadrilateral elements. When folded plates are analyzed, triangular elements as well as quadrilateral elements are needed for conveniences of modelling. However, using triangular elements is not a simple problem. A simple formulation is presented which allows a quadrilateral element to degenerate into a triangular element. Therefore it can easily be used for computational simplicity and avoided complexities on mixed use of triangular element and quadrilateral element. In this paper, a high-order shear deformation theory using only Lagrangian interpolation functions and drilling degrees of freedom for folded plates are utilized for more accurate analysis. Especially, various results of anisotropic laminated and folded composite structures with triangular element and quadrilateral element show the structural behavior characteristics of them.

A New Indirct Quadrilateral Mesh Generation Scheme from Background Triangular Mesh (삼각형 배경 요소를 이용한 새로운 사각형 요소망 생성법)

  • Kwon K.Y.;Park J.M.;Lee B.C.;Chae S.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-114
    • /
    • 2006
  • A new quadrilateral mesh generation technique from an existing triangle mesh is proposed in this paper. The proposed method is based on advancing front method and zero-thickness layer. Beginning with an initial triangular mesh, boundary triangular elements are removed and quadrilateral elements with zero thickness are generated. A quality of quadrilateral elements is improved during a mesh smoothing process. Until all initial triangular elements are removed, this procedure is repeated. Sample meshes are constructed to demonstrate the mesh generation capability of proposed algorithm.

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF

Automatic Generation System for Quadrilateral Meshes on NURBS Surfaces (NURBS 곡면에서 사각형 요소망의 자동생성 시스템)

  • Kim, Hyung-Il;Park, Jang-Won;Kwon, Ki-Youn;Cho, Yun-Won;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.894-899
    • /
    • 2000
  • An automatic mesh generation system with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed.. In this paper, NURBS surface geometries in the IGES format have been used to represent model shape. NURBS surface is represented as parametric surface. So each surface could be mapped to a 2D parametric plane through the parametric domain. And then meshes with quadrilateral elements are constructed in this plane. Finally, the constructed meshes are mapped back to the original 3D surface through the parametric domain. In this paper, projection plane, quasi-expanded plane and parametric Plane are used as 2D mesh generation plane. For mapping 3D surface to parametric domain, Newton-Rhapson Method is employed. For unstructured mesh generation with quadrilateral elements on 2D plane, a domain decomposition algorithm using loop operators has been employed. Sample meshes are represented to demonstrate the effectiveness of the proposed algorithm.

  • PDF

A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures (3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.

Formulation and evaluation of incompatible but convergent rational quadrilateral membrane elements

  • Batoz, J.L.;Hammadi, F.;Zheng, C.;Zhong, W.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.153-168
    • /
    • 2000
  • This paper presents four incompatible but convergent Rational quadrilateral elements, two four-node elements (RQ4Z and RQ4B) and two five-node elements (RQ5Z and RQ5B). The difference between the so-called Rational Finite Element (Zhong and Zeng 1996) and the Free Formulation (Bergan and Nygard 1984) are discussed and compared. The importance of the mode completeness in these formulations is emphasized. Numerical results for several benchmark problems show the good performance of these elements. The two five-nodes elements RQ5Z and RQ5B, which can be viewed as complete quadratic mode elements (with seven stress modes), always give better results than the four nodes elements RQ4Z and RQ4B.

Automatic Generation of Quadrilateral Shell Elements on Sculptured Surfaces (자유곡면에서 사각형 쉘요소의 자동생성)

  • Park, S.J.;Chae, S.W.;Koh, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.145-153
    • /
    • 1995
  • An algorithm for the automatic generation of quadrilateral shell elements on three-dimensional sculptured surfaces has been developed, which is one of the key issues in the finite element analysis of structures with complex shapes such as automobile structures. Mesh generation on sculptured surfaces is performed in three steps. First a sculptured surface is transformed to a projection plane, on which the loops are subdivided into subloops by using the best split lines, and with the use of 6-node/8-node loop operators and a layer operator, quadrilateral finite elements are constructed on this plane. Finally, the constructed mesh is transformed back to the original sculptured surfaces. The proposed mesh generation scheme is suited for the generation of non-uniform meshes so that it can be effectively used when the desired mesh density is available. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

Problem-dependent cubic linked interpolation for Mindlin plate four-node quadrilateral finite elements

  • Ribaric, Dragan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1071-1094
    • /
    • 2016
  • We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral plate finite elements with 12 external degrees of freedom that pass the constant bending patch test for arbitrary node positions of which the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form. The new elements are compared to the existing linked-interpolation quadratic and nine-node cubic elements presented by the author earlier and to the other elements from literature that use the cubic linked interpolation by testing them on several benchmark examples.

Automatic Generation of Quadrilateral Meshes on Trimmed Surfaces (트림 곡면상에서 사각형 요소망의 자동 생성)

  • 김형일;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • An atomatic mesh generation scheme with unstructured quadrilateral elements on trimmed surfaces has been developed. Trimmed surfaces are often encountered in modeling of structures with complex shapes such as aircrafts, automobile structures, pressure vessels and etc. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been used. Mesh generation on trimmed surface is performed in three steps. First, trimmed surfaces with holes or cuts are transformed to th largest projection planes in which the meshes are constructed. The constructed meshes are transformed to the u-v parametric plane and then finally to the original 3D surfaces. Th exact locations of holes or cuts in projection planes are determined by the Newton-Raphson method. Sample meshes are constructed to demonstrate the effectiveness of the proposed algorithm.

  • PDF