Acknowledgement
Grant : Configuration-dependent Approximation in Non-linear Finite-element Analysis of Structures
Supported by : Croatian Science Foundation
References
- Auricchio, F. and Taylor, R.L. (1994), "A shear deformable plate element with an exact thin limit", Comput. Meth. Appl. Mech. Eng., 118(3), 393-412. https://doi.org/10.1016/0045-7825(94)90009-4
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22(3), 697-722. https://doi.org/10.1002/nme.1620220312
- Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234. https://doi.org/10.1002/nme.4632
- Chen, W.J., Wang, J.Z. and Zhao, J. (2009), "Functions for patch test in finite element analysis of the Mindlin plate and the thin cylindrical shell", Sci. China Ser. G: Phys. Mech. Astron., 52(5), 762-767. https://doi.org/10.1007/s11433-009-0097-y
- Choo, Y.S., Choi, N. and Lee, B.C. (2010), "A new hybrid-Trefftz triangular and quadrilateral plate elements", Appl. Math. Model., 34(1), 14-23. https://doi.org/10.1016/j.apm.2009.03.022
- Crisfield, M.A. (1984), "A quadratic Mindlin element using shear constraints", Comput. Struct., 18(5), 833-852. https://doi.org/10.1016/0045-7949(84)90030-0
- Dukic-Papa, E. and Jelenic, G. (2014), "Exact solution of 3D Timoshenko beam problem: problemdependent formulation", Arch. Appl. Mech., 84(3), 375-384. https://doi.org/10.1007/s00419-013-0805-y
- Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element", J. Appl. Mech., 48(3), 587-596. https://doi.org/10.1115/1.3157679
- Ibrahimbegovic, A. (1993), "Quadrilateral finite elements for analysis of thick and thin plates", Comput. Meth. Appl. Mech. Eng., 110(3), 195-209. https://doi.org/10.1016/0045-7825(93)90160-Y
- Jelenic, G. and Papa, E. (2011), "Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order", Arch. Appl. Mech., 81(2), 171-183. https://doi.org/10.1007/s00419-009-0403-1
- Lee, P.S. and Bathe, K.J. (2010), "The quadratic MITC plate and MITC shell elements in plate bending", Adv. Eng. Softw., 41(5), 712-728. https://doi.org/10.1016/j.advengsoft.2009.12.011
- MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70(1), 3-12. https://doi.org/10.1016/0029-5493(82)90262-X
- Papadopoulos, P. and Taylor, R.L. (1990), "A triangular element based on Reissner-Mindlin plate theory", Int. J. Numer. Meth. Eng., 30(5), 1029-1049. https://doi.org/10.1002/nme.1620300506
- Rezaiee-Pajand, M. and Karkon, M. (2012), "Two efficient hybrid-Trefftz elements for plate bending analysis", Latin Am. J. Solid. Struct., 9(1), 43-67. https://doi.org/10.1590/S1679-78252012000100003
- Ribaric, D. (2012), "Higher-order linked interpolation in moderately thick plate and facet shell finite elements", PhD Thesis, Faculty of Civil Engineering, University of Rijeka.
- Ribaric, D. and Jelenic, G. (2012), "Higher-order linked interpolation in quadrilateral thick plate finite elements", Finite Elem. Anal. Des., 51, 67-80. https://doi.org/10.1016/j.finel.2011.10.003
- Ribaric, D. and Jelenic, G. (2014), "Distortion-immune nine-node displacement-based quadrilateral thick plate finite elements that satisfy constant-bending patch test", Int. J. Numer. Meth. Eng., 98(7), 492-517. https://doi.org/10.1002/nme.4639
- Soh, A.K., Cen, S., Long, Y.Q. and Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech. A/Solid., 20(2), 299-326. https://doi.org/10.1016/S0997-7538(00)01129-3
- Taylor, R.L. and Auricchio, F. (1993), "Linked interpolation for Reissner-Mindlin plate elements: Part II-a simple triangle", Int. J. Numer. Meth. Eng., 36(18), 3057-3066. https://doi.org/10.1002/nme.1620361803
- Tessler, A. and Dong, S.B. (1981), "On a hierarchy of conforming Timoshenko beam elements", Comput. Struct., 14(3), 335-344. https://doi.org/10.1016/0045-7949(81)90017-1
- Tessler, A. and Hughes, T.J.R. (1983), "An improved treatment of transverse shear in the Mindlin-type fournode quadrilateral element", Comput. Meth. Appl. Mech. Eng., 39(3), 311-335. https://doi.org/10.1016/0045-7825(83)90096-8
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear deformable beams and plates: Relationships with classical solutions, Elsevier.
- WanJi, C. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory" Int. J. Numer. Meth. Eng., 47(1-3), 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Xu, Z., Zienkiewicz, O.C. and Zeng L.F. (1994), "Linked interpolation for Reissner-Mindlin plate elements: Part III-An alternative quadrilateral", Int. J. Numer. Meth. Eng., 37(9), 1437-1443. https://doi.org/10.1002/nme.1620370902
- Zhang, H. and Kuang, J.S. (2007), "Eight-node Reissner-Mindlin plate element based on boundary interpolation using Timoshenko beam function", Int. J. Numer. Meth. Eng., 69(7), 1345-1373. https://doi.org/10.1002/nme.1809
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The finite element method: Solid mechanics, Fifth Edition, Butterworth-Heinemann.
- Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), "Linked interpolation for Reissner-Mindlin plate elements: Part I-A simple quadrilateral", Int. J. Numer. Meth. Eng., 36(18), 3043-3056. https://doi.org/10.1002/nme.1620361802