• Title/Summary/Keyword: quadrature detection

Search Result 70, Processing Time 0.027 seconds

Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing

  • Hwang, Jeong-hwan;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.204-209
    • /
    • 2019
  • In an optical interferometer that uses sinusoidal modulation and quadrature detection, the amplitude and offset of the interference signal vary with time, even without considering system noise. As a result, the circular Lissajous figure becomes elliptical, with wide lines. We propose and experimentally demonstrate a method for compensating quadrature detection error, based on digital signal processing to deal with scaling and fitting. In scaling, fluctuations in the amplitudes of in-phase and quadrature signals are compensated, and the scaled signals are fitted to a Lissajous unit circle. To do so, we scale the average fluctuation, remove the offset, and fit the ellipse to a unit circle. Our measurements of a target moving with uniform velocity show that we reduce quadrature detection error from 5 to 2 nanometers.

Experimental Considration of Multi-order Sampling for Digital Beamforming (디지털 빔포밍을 위한 다차 샘플링 방법의 실험적 고찰)

  • 나병윤;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 1998
  • In this paper, several bandwidth sampling methods were compared using experimental result in which contains "multi-order sampling", which was proposed for envelope detections in RF ultrasonic signals. A "Quadrature sampling method" and "Second-order sampling method" were compared with it. The resultant image of second-order sampling method introduces too much error as compared with the result of quadrature sampling. But Multi-order sampling method, specialy 5-th sampling method showed quite good envelope detection property. This means that more economical and quite good performance digital beamforming system can be built by adopting this multi-order sampling method.s multi-order sampling method.

  • PDF

Novel Laser Ultrasonic Receiver for Industrial NDE

  • Pouet, B.;Breugnot, S.;Clemenceau, P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.380-389
    • /
    • 2006
  • A new laser-based ultrasonic receiver that is based on multi-channel interferometry is shown to be well suited for robust and sensitive detection of ultrasound in industrial environment. The proposed architecture combines random-quadrature detection with detector arrays and parallel multi-speckle processing. The high sensitivity is reached, thanks to the random phase distribution of laser speckle caused by surface roughness. High-density parallel signal processing is achieved by using a simple demodulation technique based on signal rectification. This simple detection scheme is also demonstrated for rejection of the laser intensity noise, making possible the use of lower cost laser without reduction in performances. Results demonstrating this new principle of operation and its performances are presented.

Design and Implementation of Microstrip Quadrature Coupler and High Power Transmitting/Receiving Switch Using Dynamic Loading Technique for 1-Tesal MRI System (동적 부하 기술을 이용한 1-Tesla 자기공명 영상 시스템용 마이크로 스트립 quadrature coupler 및 고출력 송수신 스위치의 설계 및 제작)

  • 류웅환;이미영;이흥규;이황수;김정호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.1-11
    • /
    • 1999
  • It is now common practice to utilize the quadrature RF coils to improve the signal-to-noise ratio (SNR) in the Magnetic Resonance Imaging (MRI) System. In addition, to make such an available SNR improvement, it is mandatory to use a well-designed quadrature coupler, which facilitates a perfect 3-dB coupling and quadrature-phase shift. However, the four ports matching condition has to be well considered during the RF excitation and the signal detection period. This work investigates the effects of such a mismatching condition (especially, due to patient) from the analysis, simulation, and real implementation and firstly proposes dynamic loading technique for a quadrature coupler and transmitting/receiving switch module to minimize a patient mismatching and enhance a system reliability. Also, we designed and implemented the quadrature coupler and transmitting/receiving switch module using microstrip. As a result, the SNR of our MRI system using the microstrip quadrature coupler and transmitting/receiving switch module with dynamic load increases 3 dB compared with the old one using USA quadrature switch. Also, the power capability of quadrature coupler and transmitting/receiving switch module is 5-kw peak power. Considering power loss and reduction of size, we used a RT/duroid 6010 substrate with high permittivity and for simulation we use Compact Software.

  • PDF

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

Photonic Generation of Frequency-tripling Vector Signal Based on Balanced Detection without Precoding or Optical Filter

  • Qu, Kun;Zhao, Shanghong;Li, Xuan;Zhu, Zihang;Tan, Qinggui
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.134-139
    • /
    • 2018
  • A novel approach for frequency-tripling vector signal generation via balanced detection without precoding and optical filter is proposed. The scheme is mainly utilizing an integrated dual-polarization quadrature phase shift keying (DPQPSK) modulator. In the DPQPSK modulator, one QPSK modulator is driven by an RF signal to generate high-order optical sidebands, while the other QPSK modulator is modulated by I/Q data streams to produce baseband vector signal as an optical carrier. After that, a frequency-tripling 16-quadrature-amplitude-modulation (16QAM) vector millimeter-wave (mm-wave) signal can be obtained by balanced detection. The proposed scheme can reduce the complexity of transmitter digital signal processing. The results show that, a 4 Gbaud baseband 16QAM vector signal can be generated at 30 GHz by frequency-tripling. After 10 km single-mode fiber (SMF) transmission, the constellation and eye diagrams of the generated vector signal perform well and a bit-error-rate (BER) below than 1e-3 can be achieved.

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.

Performance of MIMO-FQPSK Receivers with MLSE (MLSE 기반 MIMO-FQPSK 수신기 성능 분석)

  • Kim, Sang-Heon;Jung, Sung-Hun;Shin, Myeong-Cheol;Lee, Cyung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.18-23
    • /
    • 2007
  • In this Paper, we consider multiple input multiple output Feher-patented quadrature phase shift keying (MIMO-FQPSK) system supporting high spectral efficiency and throughput. Based on the fact that the complex baseband signal sampled at every bit duration has only eight phase values and its signal can be considered as 8-phase-shift keying signal, FQPSK demodulation with maximum likelihood sequence estimation(MLSE) is considered and it is extended to MIMO system. The performance of MIMO-FQPSK receiver is analyzed by computer simulation and by considering the union upper bounds for zrero forcing detection and minimum mean square error detection.

Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer (광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지)

  • Lee, Jeong-Ju;Jang, Tae-Seong;Lee, Seung-Seok;Kim, Yeong-Gil;Gwon, Il-Beom;Lee, Wang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.

The Performance of Chip Level Detection for DS/CDMA Operating in LEO Satellite Channel (저궤도 위성통신을 위한 칩레벨 DS/CDMA 시스템의 성능 평가에 관한 연구)

  • Jae-Hyung Kim;Seung-Wook Hwang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.553-558
    • /
    • 1998
  • We present in this paper the ture union bound of the performance of chip level detection for coded DS/CDMA system operating in Rician fading channels such as LEO satellite mobile radio where the maximum doppler frequency is very high. The main objective of this paper is to calculate the exact doe union bound of BER performance of different performance of different quadrature detectors and to find a optimum spreading factor as a function of fade rate. The rationale of using multiple chip detection is to reduce the effective fade rate or variation. We considered chip level differential detection, chip level maximum likelihood sequence estimation, noncoherent detection and coherent detection with perfect channel state information as a reference.

  • PDF