Journal of the Korean Data and Information Science Society
/
v.26
no.6
/
pp.1537-1545
/
2015
Support vector quantile regression (SVQR) can be obtained by applying support vector machine with a check function instead of an e-insensitive loss function into the quantile regression, which still requires to solve a quadratic program (QP) problem which is time and memory expensive. In this paper we propose an SVQR whose objective function is composed of an asymmetric quadratic loss function. The proposed method overcomes the weak point of the SVQR with the check function. We use the iterative procedure to solve the objective problem. Furthermore, we introduce the generalized cross validation function to select the hyper-parameters which affect the performance of SVQR. Experimental results are then presented, which illustrate the performance of proposed SVQR.
Journal of the Korean Data and Information Science Society
/
v.15
no.2
/
pp.449-455
/
2004
Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval regression models for crisp input-output data. The proposed method is based on quadratic loss SVM, which implements quadratic programming approach giving more diverse spread coefficients than a linear programming one. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.
Communications for Statistical Applications and Methods
/
v.7
no.3
/
pp.767-772
/
2000
Zellner(1994) introduced the notion of a balanced loss function in the context of a general liner model to reflect both goodness of fit and precision of estimation. We study the perspective of unifying a variety of results both frequentist and Bayesian from Poisson distributions. We show that frequentist and Bayesian results for balanced loss follow from and also imply related results for quadratic loss functions reflecting only precision of estimation. Several examples are given for Poisson distribution.
Communications for Statistical Applications and Methods
/
v.17
no.2
/
pp.183-191
/
2010
Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.
Process capability indices are being used as indicators for measurements of process capability for SPC of quality assurance system in industries. In view of the enhancement of customer satisfaction, process capability indices in which loss functions are used to deal with the economic loss In the processes deviated from the target, are in an adequate representation of the customer's perception of quality In this connection, the loss function has become increasingly important in quality assurance. Taguchi uses a modified form of the quadratic loss function to demonstrate the need to consider the proximity to the target while assessing its quality. But this traditional quadratic loss function is inadequate to assessing the quality and quality improvement since different processes have different sets of economic consequences on the manufacturing, Thereby, a flexible approach to the development of the loss function needs to be desired. In this paper, we introduce an easily understood loss function, based on reflection of probability density function of the normal distribution. That is, the Reflected Normal Loss function can be adapted to an asymmetric loss as well as to a symmetric loss around the target. We propose that, instead of the process variation, a new capability index, CpI using the Reflected Normal Loss Function that can accurately reflect the losses associated with the process and a new capability index CpI Is compared with the classical indices as $C_{p}$ , $C_{pk}$, $C_{pm}$ and $C_{pm}$$^{+}$.>.+/./.
In this paper we propose how to simultaneously optimize multiple responses for robust design when data are collected from a combined array. The proposed method is based on the quadratic loss function. An example is illustrated to show the proposed method.
Journal of the Korean Data and Information Science Society
/
v.16
no.2
/
pp.255-261
/
2005
Many designed experiments require the simultaneous optimization of multiple responses. In this paper, we propose how to simultaneously optimize multiple responses for robust design when data are collected from a combined array. The proposed method is based on the quadratic loss function. An example is illustrated to show the proposed method.
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.2
/
pp.37-45
/
2016
Control chart is representative tools of statistical process control (SPC). It is a graph that plotting the characteristic values from the process. It has two steps (or Phase). First step is a procedure for finding a process parameters. It is called Phase I. This step is to find the process parameters by using data obtained from in-controlled process. It is a step that the standard value was not determined. Another step is monitoring process by already known process parameters from Phase I. It is called Phase II. These control chart is the process quality characteristic value for management, which is plotted dot whether the existence within the control limit or not. But, this is not given information about the economic loss that occurs when a product characteristic value does not match the target value. In order to meet the customer needs, company not only consider stability of the process variation but also produce the product that is meet the target value. Taguchi's quadratic loss function is include information about economic loss that occurred by the mismatch the target value. However, Taguchi's quadratic loss function is very simple quadratic curve. It is difficult to realistically reflect the increased amount of loss that due to a deviation from the target value. Also, it can be well explained by only on condition that the normal process. Spiring proposed an alternative loss function that called reflected normal loss function (RNLF). In this paper, we design a new control chart for overcome these disadvantage by using the Spiring's RNLF. And we demonstrate effectiveness of new control chart by comparing its average run length (ARL) with ${\bar{x}}-R$ control chart and expected loss control chart (ELCC).
Journal of Korean Society of Industrial and Systems Engineering
/
v.36
no.2
/
pp.56-62
/
2013
Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.
Support vector machine(SVM) approach to regression can be found in information science literature. SVM implements the regularization technique which has been introduced as a way of controlling the smoothness properties of regression function. In this paper, we propose a new estimation method based on quadratic loss SVM for a linear fuzzy regression model of Tanaka's, and furthermore propose a estimation method for nonlinear fuzzy regression. This approach is a very attractive approach to evaluate nonlinear fuzzy model with crisp input and output data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.