• Title/Summary/Keyword: quadratic functions

Search Result 309, Processing Time 0.021 seconds

ON THE HYERS-ULAM STABILITY OF A GENERALIZED QUADRATIC AND ADDITIVE FUNCTIONAL EQUATION

  • JUN, KIL-WOUNG;KIM, HARK-MAHN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.133-148
    • /
    • 2005
  • In this paper, we obtain the general solution of a gen-eralized quadratic and additive type functional equation f(x + ay) + af(x - y) = f(x - ay) + af(x + y) for any integer a with a $\neq$ -1. 0, 1 in the class of functions between real vector spaces and investigate the generalized Hyers- Ulam stability problem for the equation.

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Trif, Tiberiu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.253-267
    • /
    • 2003
  • In this paper we deal With the quadratic functional equation (equation omitted) deriving from an inequality of T. Popoviciu for convex functions. We solve this functional equation by proving that its solutions we the polynomials of degree at most two. Likewise, we investigate its stability in the spirit of Hyers, Ulam, and Rassias.

Controller Design for Affine T-S Fuzzy System with Parametric Uncertainties (파라미터 불확실성을 갖는 어핀 T-S 퍼지 시스템의 제어기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.133-136
    • /
    • 2004
  • This paper proposes a stability condition in affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

ON THE HYERS-ULAM-RASSIAS STABILITY OF A MODIFIED ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Kim, Hark-Mann;Lee, Don-O
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.323-335
    • /
    • 2004
  • In this paper, we solve the general solution of a modified additive and quadratic functional equation f(χ + 3y) + 3f(χ-y) = f(χ-3y) + 3f(χ+y) in the class of functions between real vector spaces and obtain the Hyers-Ulam-Rassias stability problem for the equation in the sense of Gavruta.

  • PDF

Multicriteria Quadratic Plant Location Problem

  • Arora, Sudha;Arora, S.R.
    • Management Science and Financial Engineering
    • /
    • v.14 no.1
    • /
    • pp.65-86
    • /
    • 2008
  • In this paper, we have considered the multicriteria quadratic plant location problem. In addition to the allocation costs, the maintenance costs of the plants are also considered. The objective functions considered in this paper are quadratic in nature. The given problem is reduced to the problem with linear objective function. The method of Fernandez and Puerto (2003) is applied to solve the reduced problem. It is illustrated with help of examples. The effect of the change in the allocation and maintenance costs on allocation of plants to the clients has also been discussed.

ON THE HYERS-ULAM STABILITY OF A QUADRATIC MAPPING IN BANACH MODULES

  • Bae, Jae-hyeong;Park, Won-Gil
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.351-358
    • /
    • 2003
  • We prove the generalized Hyers-Ulam stability of a quadratic functional equation f($\chi$+ y + z) + f($\chi$) + f(y) + f(z) = f($\chi$+ y) + f(y + z) + f(z + $\chi$) for the functions defined between Banach modules over a Banach algebra.

QUADRATIC FORMS ON THE $\mathcal{l}^2$ SPACES

  • Chung, Phil-Ung
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.471-478
    • /
    • 2007
  • In this article we shall introduce several operators on the reproducing kernel spaces and investigate quadratic forms on the $\mathcal{l}^2$ space. Using these operators we shall obtain a particular solution of a system of quadratic equations(1.5). Finally we can find an approximate solution of(1.5) by optimization of a nonnegative biquadratic polynomial.

A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic Equations, II

  • Jun, Kil-Woung;Lee, Yang-Hi
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.91-103
    • /
    • 2007
  • In this paper we prove the Hyers-Ulam-Rassias stability by considering the cases that the approximate remainder ${\varphi}$ is defined by $f(x{\ast}y)+f(x{\ast}y^{-1})-2g(x)-2g(y)={\varphi}(x,y)$, $f(x{\ast}y)+g(x{\ast}y^{-1})-2h(x)-2k(y)={\varphi}(x,y)$, where (G, *) is a group, X is a real or complex Hausdorff topological vector space and f, g, h, k are functions from G into X.

  • PDF