• Title/Summary/Keyword: quadratic fields

Search Result 117, Processing Time 0.021 seconds

A NOTE ON UNITS OF REAL QUADRATIC FIELDS

  • Byeon, Dong-Ho;Lee, Sang-Yoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.767-774
    • /
    • 2012
  • For a positive square-free integer $d$, let $t_d$ and $u_d$ be positive integers such that ${\epsilon}_d=\frac{t_d+u_d{\sqrt{d}}}{\sigma}$ is the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$, where ${\sigma}=2$ if $d{\equiv}1$ (mod 4) and ${\sigma}=1$ otherwise For a given positive integer $l$ and a palindromic sequence of positive integers $a_1$, ${\ldots}$, $a_{l-1}$, we define the set $S(l;a_1,{\ldots},a_{l-1})$ := {$d{\in}\mathbb{Z}|d$ > 0, $\sqrt{d}=[a_0,\overline{a_1,{\ldots},2a_0}]$}. We prove that $u_d$ < $d$ for all square-free integer $d{\in}S(l;a_1,{\ldots},a_{l-1})$ with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.

AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS

  • Ryang, Yong Joon
    • Korean Journal of Mathematics
    • /
    • v.4 no.1
    • /
    • pp.7-16
    • /
    • 1996
  • The optimization problems with quadratic constraints often appear in various fields such as network flows and computer tomography. In this paper, we propose an algorithm for solving those problems and prove the convergence of the proposed algorithm.

  • PDF

Function Approximation Using an Enhanced Two-Point Diagonal Quadratic Approximation (개선된 이점 대각 이차 근사화를 이용한 함수 근사화)

  • Kim, Jong-Rip;Kang, Woo-Jin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.475-480
    • /
    • 2004
  • Function approximation is one of the most important and active research fields in design optimization. Accurate function approximations can reduce the repetitive computational effort fur system analysis. So this study presents an enhanced two-point diagonal quadratic approximation method. The proposed method is based on the Two-point Diagonal Quadratic Approximation method. But unlike TDQA, the suggested method has two quadratic terms, the diagonal term and the correction term. Therefore this method overcomes the disadvantage of TDQA when the derivatives of two design points are same signed values. And in the proposed method, both the approximate function and derivative values at two design points are equal to the exact counterparts whether the signs of derivatives at two design points are the same or not. Several numerical examples are presented to show the merits of the proposed method compared to the other forms used in the literature.

Determination of all imaginary bicyclic biquadratic number fields of class number 3

  • Jung, Seok-Won;Kwon, Soun-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Using the list of all imaginary quadratic fields with class number 1, 2, 3 and 6, we determine all imaginary bicyclic biquadratic number fields of class number 3. There are exactly 163 such fields and their conductors are less than or equal to 163 $\cdot$883.

  • PDF

REMARKS ON FINITE FIELDS

  • Kang, Shin-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.81-85
    • /
    • 1983
  • It is the purpose of this paper to give some remarks on finite fields. We shall show that the little theorem of Fermat, Euler's criterion for quadratic residue mod p, and other few theorems in the number theory can be derived from the theorems in theory of finite field K=GF(p), where p is a prime. The forms of some irreducible ploynomials over K-GF(p) will be given explicitly.

  • PDF

QUADRATIC RESIDUE CODES OVER ℤ9

  • Taeri, Bijan
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.13-30
    • /
    • 2009
  • A subset of n tuples of elements of ${\mathbb{Z}}_9$ is said to be a code over ${\mathbb{Z}}_9$ if it is a ${\mathbb{Z}}_9$-module. In this paper we consider an special family of cyclic codes over ${\mathbb{Z}}_9$, namely quadratic residue codes. We define these codes in term of their idempotent generators and show that these codes also have many good properties which are analogous in many respects to properties of quadratic residue codes over finite fields.

GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

  • SHIN, DONG HWA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.907-928
    • /
    • 2015
  • We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.