• Title/Summary/Keyword: quadratic

Search Result 3,140, Processing Time 0.027 seconds

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.

NORMAL FUZZY PROBABILITY FOR GENERALIZED QUADRATIC FUZZY SETS

  • Kim, Changil;Yun, Yong Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.217-225
    • /
    • 2012
  • A generalized quadratic fuzzy set is a generalization of a quadratic fuzzy number. Zadeh defines the probability of the fuzzy event using the probability. We define the normal fuzzy probability on $\mathbb{R}$ using the normal distribution. And we calculate the normal fuzzy probability for generalized quadratic fuzzy sets.

EVEN 2-UNIVERSAL QUADRATIC FORMS OF RANK 5

  • Ji, Yun-Seong;Kim, Myeong Jae;Oh, Byeong-Kweon
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.849-871
    • /
    • 2021
  • A (positive definite integral) quadratic form is called even 2-universal if it represents all even quadratic forms of rank 2. In this article, we prove that there are at most 55 even 2-universal even quadratic forms of rank 5. The proofs of even 2-universalities of some candidates will be given so that exactly 20 candidates remain unproven.

QUADRATIC RESIDUE CODES OVER ℤ16

  • Kim, Sung Jin
    • Korean Journal of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • We define $Z_16$ quadratic residue codes in term of their idempotent generators and show that these codes also have many good properties which are analogous in many respects to properties of quadratic residue codes over a field.

  • PDF

ON THE QUADRATIC MAPPING IN GENERALIZED QUASI-BANACH SPACES

  • Park, Choonkil;Jun, Kil-Woung;Lu, Gang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.263-274
    • /
    • 2006
  • In this paper, we prove the Hyers-Ulam-Rassias stability of the quadratic mapping in generalized quasi-Banach spaces, and of the quadratic mapping in generalized p-Banach spaces.

  • PDF

Constructing $G^1$ Quadratic B$\acute{e}$zier Curves with Arbitrary Endpoint Tangent Vectors

  • Gu, He-Jin;Yong, Jun-Hai;Paul, Jean-Claude;Cheng, Fuhua (Frank)
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Quadratic B$\acute{e}$zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic B$\acute{e}$zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing $G^1$ quadratic B$\acute{e}$zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the $G^1$ quadratic B$\acute{e}$zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.