DOI QR코드

DOI QR Code

EVEN 2-UNIVERSAL QUADRATIC FORMS OF RANK 5

  • Ji, Yun-Seong (Research Institute of Mathematics Seoul National University) ;
  • Kim, Myeong Jae (Department of Mathematical Sciences Seoul National University) ;
  • Oh, Byeong-Kweon (Department of Mathematical Sciences Seoul National University)
  • Received : 2020.05.21
  • Accepted : 2020.11.23
  • Published : 2021.07.01

Abstract

A (positive definite integral) quadratic form is called even 2-universal if it represents all even quadratic forms of rank 2. In this article, we prove that there are at most 55 even 2-universal even quadratic forms of rank 5. The proofs of even 2-universalities of some candidates will be given so that exactly 20 candidates remain unproven.

Keywords

Acknowledgement

This work of the first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2017R1A5A1015626) and the Ministry of Education (NRF-2019R1I1A1A01060756). This work of the second and the third author was supported by the National Research Foundation of Korea (NRF-2019R1A2C1086347 and NRF-2020R1A5A1016126).

References

  1. M. Bhargava, On the Conway-Schneeberger fifteen theorem, in Quadratic forms and their applications (Dublin, 1999), 27-37, Contemp. Math., 272, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/conm/272/04395
  2. M. Bhargava and J. Hanke, Universal quadratic forms and the 290-theorem, Preprint.
  3. J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, 13, Academic Press, Inc., London, 1978.
  4. J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. I. Quadratic forms of small determinant, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 17-41. https://doi.org/10.1098/rspa.1988.0072
  5. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third edition, Grundlehren der Mathematischen Wissenschaften, 290, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4757-6568-7
  6. L. K. Hua, Introduction to Number Theory, translated from the Chinese by Peter Shiu, Springer-Verlag, Berlin, 1982.
  7. D.-S. Hwang, On almost 2-universal integral quinary quadratic forms, Ph. D. Thesis, Seoul National Univ. 1997.
  8. Y.-S. Ji, M.-H. Kim, and B.-K. Oh, Binary quadratic forms represented by a sum of nonzero squares, J. Number Theory 148 (2015), 257-271. https://doi.org/10.1016/j.jnt.2014.09.009
  9. Y.-S. Ji, M. J. Kim, and B.-K. Oh, Diagonal quadratic forms representing all binary diagonal quadratic forms, Ramanujan J. 45 (2018), no. 1, 21-32. https://doi.org/10.1007/s11139-016-9857-2
  10. M.-H. Kim, Recent developments on universal forms, in Algebraic and arithmetic theory of quadratic forms, 215-228, Contemp. Math., 344, Amer. Math. Soc., Providence, RI, 2004. https://doi.org/10.1090/conm/344/06218
  11. B. M. Kim, M.-H. Kim, and B.-K. Oh, 2-universal positive definite integral quinary quadratic forms, in Integral quadratic forms and lattices (Seoul, 1998), 51-62, Contemp. Math., 249, Amer. Math. Soc., Providence, RI, 1999. https://doi.org/10.1090/conm/249/03747
  12. M.-H. Kim, J. K. Koo, and B.-K. Oh, Representations of binary forms by certain quinary positive integral quadratic forms, J. Number Theory 89 (2001), no. 1, 97-113. https://doi.org/10.1006/jnth.2000.2631
  13. K. Kim and B.-K. Oh, A sum of squares not divisible by a prime, submitted.
  14. Y. Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J. 92 (1983), 145-152. https://doi.org/10.1017/S0027763000020626
  15. Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, 106, Cambridge University Press, Cambridge, 1993. https://doi.org/10.1017/CBO9780511666155
  16. B.-K. Oh, Universal Z-lattices of minimal rank, Proc. Amer. Math. Soc. 128 (2000), no. 3, 683-689. https://doi.org/10.1090/S0002-9939-99-05254-5
  17. O. T. O'Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878. https://doi.org/10.2307/2372837
  18. O. T. O'Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117, Academic Press, Inc., Publishers, New York, 1963.
  19. S. Ramanujan, On the expression of a number in the form ax2 + by2 + cz2 + du2, Proc Cambridge Phil. Soc. 19 (1917), 11-21.
  20. B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309. https://doi.org/10.1007/BF02392364
  21. M. F. Willerding, Determination of all classes of positive quaternary quadratic forms which represent all (positive) integers, Bull. Amer. Math. Soc. 54 (1948), 334-337. https://doi.org/10.1090/S0002-9904-1948-08998-4