• Title/Summary/Keyword: q-series

Search Result 419, Processing Time 0.029 seconds

HQSAR Study of Microsomal Prostaglandin E2 Synthase (mPGES-1) Inhibitors

  • San Juan, Amor A.;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1531-1536
    • /
    • 2006
  • Microsomal prostaglandin $E_2$ synthase (mPGES-1) is an enzyme that is associated with inflammation, pain, fever and cancer. Hologram quantitative structure activity relationship (HQSAR) was conducted on the series of MK-886 compounds acting as mPGES-1 inhibitors. A training set with 24 compounds was used to establish the HQSAR model. The best model was chosen based on the cross-validated correlation coefficient ($q^2$=0.884) and the correlation coefficient($r^2$=0.976). The model was utilized to predict the activity of the eight-test set of compounds giving the predictive $r^2$ value of 0.845. The descriptors of the model are based on fragment distinction (atoms, bond and connectivity) and fragment size (2-5 atoms). The atomic contribution maps generated from HQSAR were useful in identifying the important structural features responsible for the inhibitory activity of MK-886 inhibitors. Based on the generated model, the presence of hydrophobic biphenyl group seems to enhance inhibition of mPGES-1 that is in agreement with the previous experiments. In addition, it seems important for a halogen to be substituted to the biphenyl ring and for an acyl group to be attached to the indole moiety for enhanced activity.

Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification (불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발)

  • 문현구;이철욱
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF

MATHEMATICAL MODELLING AND ITS SIMULATION OF A QUASI-STATIC THERMOELASTIC PROBLEM IN A SEMI-INFINITE HOLLOW CIRCULAR DISK DUE TO INTERNAL HEAT GENERATION

  • Gaikwad, Kishor R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2015
  • The present paper deals with the determination of temperature, displacement and thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within it. Initially the disk is kept at arbitrary temperature F(r, z). For times t > 0 heat is generated within the circular disk at a rate of g(r, z, t) $Btu/hr.ft^3$. The heat flux is applied on the inner circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept at temperature $Q_3(r,t)$ and the upper surface ($Z={\infty}$) is kept at zero temperature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction equation has been solved by using finite Hankel transform and the generalized finite Fourier transform. As a special case mathematical model is constructed for different metallic disk have been considered. The results are obtained in series form in terms of Bessel's functions. These have been computed numerically and illustrated graphically.

Broad and stage-based sensing function of HCFRP sensors

  • Wu, Z.S.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.133-146
    • /
    • 2007
  • This paper addresses a new type of broad and stage-based hybrid carbon fiber reinforced polymer (HCFRP) sensor that is suitable for the sensing of infrastructures. The HCFRP sensors, a type of composite sensor, are fabricated with three types of carbon tows of different strength and moduli. For all of the specimens, the active materials are carbon tows by virtue of their electrical conductivity and piezoresistivity. The measurement principles are based on the micro- and macro-fractures of different types of carbon tows. A series of experiments are carried out to investigate the sensing performances of the HCFRP sensors. The main variables include the stack order and volume fractions of different types of carbon tows. It is shown that the change in electrical resistance is in direct proportion to the strain/load in low strain ranges. However, the fractional change in electrical resistance (${\Delta}R/R_0$) is smaller than 2% prior to the macrofractures of carbon tows. In order to improve the resistance changes, measures are taken that can enhance the values of ${\Delta}R/R_0$ by more than 2 times during low strain ranges. In high strain ranges, the electrical resistance changes markedly with strain/load in a step-wise manner due to the gradual ruptures of different types of carbon tows at different strain amplitudes. The values of ${\Delta}R/R_0$ due to the fracture of high modulus carbon tows are larger than 36%. Thus, it is demonstrated that the HCFRP sensors have a broad and stage-based sensing capability.

The Effect of Corporate Governance Disclosure on Banking Performance: Empirical Evidence from Iran, Saudi Arabia and Malaysia

  • KHANIFAH, Khanifah;HARDININGSIH, Pancawati;DARMARYANTIKO, Asri;IRYANTIK, Iryantika;UDIN, Udin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • A series of corporate failures and financial crises have raised attention to organizational governance issues, especially for financial institutions. In the banking system, corporate governance further plays a unique role because of the uniqueness of the banking organizations. Therefore, this study aims to examine the effect of corporate governance disclosure on bank performance by building a corporate governance disclosure index (CGDI) for 10 Islamic banks operating in Iran, Saudi Arabia and Malaysia. The data used in this study are secondary data taken from annual reports and sourced from the official websites of each banks include Iran Exchange, Stock Market Quotes and Financial News, and Bursa Malaysia. This study uses content analysis of the annual bank report within five years (2014-2018). The results show that Islamic banks comply with 72.4% of the attributes discussed in the CGDI. The most frequently reported and disclosed elements are board structure and audit committee. The regression results provide evidence that Islamic banks with a higher level of corporate governance disclosure reported high operating performance measured by ROA. In contrast to the expectation, the financial performance of ROE and Tobins'q are not significantly related to the disclosure of sharia bank governance.

Cytotoxic Activity and Structure Activity Relationship of Ceramide Analogues in Caki-2 and HL-60 Cells

  • Kim, Yong-Jin;Kim, Eun-Ae;Sohn, Uy-Dong;Yim, Chul-Bu;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.441-447
    • /
    • 2010
  • B13, a ceramide analogue, is a ceramidase inhibitor and induces apoptosis to give potent anticancer activity. A series of thiourea B13 analogues was evaluated for their in vitro cytotoxic activities against human renal cancer Caki-2 and leukemic cancer HL-60 in the MTT assay. Some compounds (12, 15, and 16) showed stronger cytotoxicity than B13 and C6-ceramide against both tumor cell lines, and compound (12) gave the most potent activity with $IC_{50}$ values of 36 and $9\;{\mu}M$, respectively. Molecular modeling of thiourea B13 analogues was carried out by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). We obtained highly reliable and predictive CoMSIA models with cross-validated $q^2$ values of 0.707 and 0.753 and CoMSIA contour maps to show the structural requirements for potent activity. These data suggest that the amide group of B13 could be replaced by thiourea, that the stereochemistry of 1,3-propandiol may not be essential for activity and that long alkyl chains increase cytotoxicity.

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Optimization for Inventory Level of Spare Parts Considering System Availability (시스템 가용도를 고려한 수리부품의 재고수준 최적화)

  • Kim, Heung-Seob;Kim, Pansoo
    • Korean Management Science Review
    • /
    • v.31 no.2
    • /
    • pp.1-13
    • /
    • 2014
  • In almost all of the organizations, the cost for acquiring and maintaining the inventory takes a considerable portion of the management budget, and thus a certain constraint is set upon the budget itself. The previous studies on inventory control for each item that aimed to improve the fill rate, backorder, and the expenditure on inventory are fitting for the commercially-operated SCM, but show some discrepancies when they are applied to the spare parts for repairing disabled systems. Therefore, many studies on systematic approach concept considering spare parts of various kinds simultaneously have been conducted to achieve effective performance for the inventory control at a lower cost, and primarily, METRIC series models can be named. However, the past studies were limited when dealing with the probability distributions for representing the situation on demand and transportation of the parts, with the (S-1, S) inventory control policy, and so on. To address these shortcomings, the Continuous Time Markov Chain (CTMC) model, which considers the phase-type distributions and the (s, Q) inventory control policies to best describe the real-world situations inclusively, is presented in this study. Additionally, by considering the cost versus the system availability, the optimization of the inventory level, based on this model, is also covered.

Cytotoxic Activity and Three-Dimensional Quantitative Structure Activity Relationship of 2-Aryl-1,8-naphthyridin-4-ones

  • Kim, Yong-Jin;Kim, Eun-Ae;Chung, Mi-Lyang;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.511-516
    • /
    • 2009
  • A series of substituted 2-arylnaphthyridin-4-one analogues, which were previously synthesized in our laboratory, were evaluated for their in vitro cytotoxic activity against human lung cancer A549 and human renal cancer Caki-2 cells using MTT assay. Some compounds (11, 12, and 13) showed stronger cytotoxicity than colchicine against both tumor cell lines, and compound 13 exhibited the most potent activity with $IC_{50}$ values of 2.3 and $13.4\;{\mu}M$, respectively. Three-dimensional quantitative structure activity relationship (3D-QSAR) studies of comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed. Predictive 3D-QSAR models were obtained with $q^2$ values of 0.869 and 0.872 and $r^2_{ncv}$ values of 0.983 and 0.993 for CoMFA and CoMSIA, respectively. These results demonstrate that CoMFA and CoMSIA models could be reliably used in the design of novel cytotoxic agents.

Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.273-284
    • /
    • 2015
  • Chemoattractant Receptor Homologous molecule expressed on Th2 cells (CRTh2) is a chemoattractant receptor with seven transmembrane helices targeted for inflammatory diseases such as asthma and allergic rhinitis. In this study, pharmacophore based Comparative Molecular Similarity Indices Analysis (CoMSIA) were performed on the series of 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids derivatives. Initially, GASP module was used for generation of pharmacophore models using five highly active compounds from the dataset. Among the generated pharmacophores, the best pharmacophore model was selected based on fitness score and was used as template for the alignment of compounds which was used for CoMSIA analysis. The best predictions were obtained utilizing steric, hydrophobic and H-bond acceptor parameters showing a $q^2$=0.559 and $r^2$=0.730. 15 test set compounds was used to investigate the predictive ability of the CoMSIA model. Contour maps suggested that presence of bulky substituents and H-bond acceptor atoms at $5^{th}$ position of benzene ring will increase the activity of the compounds. The results obtained from this study will be useful to design more potent CRTh2 antagonists.