• Title/Summary/Keyword: q-series

Search Result 416, Processing Time 0.02 seconds

A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS INCLUDING ASKEY SCHEME

  • Savalia, Rajesh V.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1175-1199
    • /
    • 2019
  • We construct a general bi-basic inverse series relation which provides extension to several q-polynomials including the Askey-Wilson polynomials and the q-Racah polynomials. We introduce a general class of polynomials suggested by this general inverse pair which would unify certain polynomials such as the q-extended Jacobi polynomials and q-Konhauser polynomials. We then emphasize on applications of the general inverse pair and obtain the generating function relations, summation formulas involving the associated polynomials and derive the p-deformation of some of the q-analogues of Riordan's classes of inverse series relations. We also illustrate the companion matrix corresponding to the general class of polynomials; this is followed by a chart showing the reducibility of the extended p-deformed Askey-Wilson polynomials as well as the extended p-deformed q-Racah polynomials.

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.

Time series analysis for incidence of scarlet fever in children in Jeju Province, Korea, 2002~2016 (2002~2016년도 제주도 소아의 성홍열 발생의 시계열분석)

  • Shin, In-Hye;Bae, Jong-Myon
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.90-95
    • /
    • 2019
  • The Korea Centers for Diseases Control and Prevention interpreted that recent outbreaks of scarlet fever in Korea since 2011 was resulted from the expansion of scarlet fever notification criteria. To suggest a relevant hypothesis regarding this emerging outbreak, a time series analysis(TSA) of scarlet fever incidence between 2002 and 2016 was conducted. The raw data was the nationwide insurance claims database administered by the Korean National Health Insurance Service. The inclusion criteria were children aged ≤14 years residing in Jeju Province, Korea who received any form of healthcare for scarlet fever from 2002 to 2016. The season was defined as winter (December, January, February; Q1), spring (March, April, May; Q2), summer (June, July, August; Q3), and autumn (September, October, November; Q4). There were seasonal variations with showing peak season on Q1 and Q3. And three phases as 2002 Q2~2005 Q2, 2005 Q2~2009 Q4, and 2010 Q1~2016 Q4 were found between 2002 and 2016. The results from TSA suggested that the recent outbreak of scarlet fever among children in Jeju Province might be a phenomenon from 'unknown birth-related environmental factors' changed after 2010.

ON THE BERGMAN KERNEL FOR SOME HARTOGS DOMAINS

  • Park, Jong-Do
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.521-533
    • /
    • 2020
  • In this paper, we compute the Bergman kernel for Ωp,q,r = {(z, z', w) ∈ ℂ2 × Δ : |z|2p < (1 - |z'|2q)(1 - |w|2)r}, where p, q, r > 0 in terms of multivariable hypergeometric series. As a consequence, we obtain the behavior of KΩp,q,r (z, 0, 0; z, 0, 0) when (z, 0, 0) approaches to the boundary of Ωp,q,r.

ON EULERIAN q-INTEGRALS FOR SINGLE AND MULTIPLE q-HYPERGEOMETRIC SERIES

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.179-196
    • /
    • 2018
  • In this paper we extend the two q-additions with powers in the umbrae, define a q-multinomial-coefficient, which implies a vector version of the q-binomial theorem, and an arbitrary complex power of a JHC power series is shown to be equivalent to a special case of the first q-Lauricella function. We then present several q-analogues of hypergeometric integral formulas from the two books by Exton and the paper by Choi and Rathie. We also find multiple q-analogues of hypergeometric integral formulas from the recent paper by Kim. Finally, we prove several multiple q-hypergeometric integral formulas emanating from a paper by Koschmieder, which are special cases of more general formulas by Exton.

A NOTE ON CONTINUED FRACTIONS WITH SEQUENCES OF PARTIAL QUOTIENTS OVER THE FIELD OF FORMAL POWER SERIES

  • Hu, Xuehai;Shen, Luming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.875-883
    • /
    • 2012
  • Let $\mathbb{F}_q$ be a finite field with q elements and $\mathbb{F}_q((X^{-1}))$ be the field of all formal Laurent series with coefficients lying in $\mathbb{F}_q$. This paper concerns with the size of the set of points $x{\in}\mathbb{F}_q((X^{-1}))$ with their partial quotients $A_n(x)$ both lying in a given subset $\mathbb{B}$ of polynomials in $\mathbb{F}_q[X]$ ($\mathbb{F}_q[X]$ denotes the ring of polynomials with coefficients in $\mathbb{F}_q$) and deg $A_n(x)$ tends to infinity at least with some given speed. Write $E_{\mathbb{B}}=\{x:A_n(x){\in}\mathbb{B},\;deg\;A_n(x){\rightarrow}{\infty}\;as\;n{\rightarrow}{\infty}\}$. It was shown in [8] that the Hausdorff dimension of $E_{\mathbb{B}}$ is inf{$s:{\sum}_{b{\in}\mathbb{B}}(q^{-2\;deg\;b})^s$ < ${\infty}$}. In this note, we will show that the above result is sharp. Moreover, we also attempt to give conditions under which the above dimensional formula still valid if we require the given speed of deg $A_n(x)$ tends to infinity.

BETA-EXPANSIONS WITH PISOT BASES OVER Fq((x-1))

  • Hbaib, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.127-133
    • /
    • 2012
  • It is well known that if the ${\beta}$-expansion of any nonnegative integer is finite, then ${\beta}$ is a Pisot or Salem number. We prove here that $\mathbb{F}_q((x^{-1}))$, the ${\beta}$-expansion of the polynomial part of ${\beta}$ is finite if and only if ${\beta}$ is a Pisot series. Consequently we give an other proof of Scheiche theorem about finiteness property in $\mathbb{F}_q((x^{-1}))$. Finally we show that if the base ${\beta}$ is a Pisot series, then there is a bound of the length of the fractional part of ${\beta}$-expansion of any polynomial P in $\mathbb{F}_q[x]$.

Subclasses of Starlike and Convex Functions Associated with Pascal Distribution Series

  • Frasin, Basem Aref;Swamy, Sondekola Rudra;Wanas, Abbas Kareem
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.99-110
    • /
    • 2021
  • In the present paper, we determine new characterisations of the subclasses ����∗��(α, β; γ) and ������(α, β; γ) of analytic functions associated with Pascal distribution series ${\Phi}^m_q(z)=z-{\sum_{n=2}^{\infty}}(^{n+m-2}_{m-1})q^{n-1}(1-q)^mz^n$. Further, we give necessary and sufficient conditions for an integral operator related to Pascal distribution series ${\mathcal{G}}^m_qf(z)={\int_{0}^{z}}{\frac{{\Phi}^m_q(t)}{t}}dt$ to belong to the above classes. Several corollaries and consequences of the main results are also considered.

Combining Regression Model and Time Series Model to a Set of Autocorrelated Data

  • Jee, Man-Won
    • Journal of the military operations research society of Korea
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 1982
  • A procedure is established for combining a regression model and a time series model to fit to a set of autocorrelated data. This procedure is based on an iterative method to compute regression parameter estimates and time series parameter estimates simultaneously. The time series model which is discussed is basically AR(p) model, since MA(q) model or ARMA(p,q) model can be inverted to AR({$\infty$) model which can be approximated by AR(p) model. The procedure discussed in this articled is applied in general to any combination of regression model and time series model.

  • PDF