• Title/Summary/Keyword: q iteration method

Search Result 21, Processing Time 0.023 seconds

Barycentric Approximator for Reinforcement Learning Control

  • Whang Cho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • Recently, various experiments to apply reinforcement learning method to the self-learning intelligent control of continuous dynamic system have been reported in the machine learning related research community. The reports have produced mixed results of some successes and some failures, and show that the success of reinforcement learning method in application to the intelligent control of continuous control systems depends on the ability to combine proper function approximation method with temporal difference methods such as Q-learning and value iteration. One of the difficulties in using function approximation method in connection with temporal difference method is the absence of guarantee for the convergence of the algorithm. This paper provides a proof of convergence of a particular function approximation method based on \"barycentric interpolator\" which is known to be computationally more efficient than multilinear interpolation .

Modified Tikhonov regularization in model updating for damage identification

  • Wang, J.;Yang, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.585-600
    • /
    • 2012
  • This paper presents a Modified Tikhonov Regularization (MTR) method in model updating for damage identification with model errors and measurement noise influences consideration. The identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains model errors and measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after several iterations. In the MTR method, new side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. The identified physical parameter can converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the proposed method. Results revealed show that the proposed method has superior performance than TR Method when there are both model errors and measurement noise in the structure system.

On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations

  • Abdel-Gawad, Hamdy I.;Osman, M.S.
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.661-680
    • /
    • 2013
  • The eigenvalue problems arise in the analysis of stability of traveling waves or rest state solutions are currently dealt with, using the Evans function method. In the literature, it had been shown that, use of this method is not straightforward even in very simple examples. Here an extended "variational" method to solve the eigenvalue problem for the higher order dierential equations is suggested. The extended method is matched to the well known variational iteration method. The criteria for validity of the eigenfunctions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.

Contingency Severity Ranking Using Direct Method in Power Systems (전력계통에 있어서 직접법을 활용한 상정사고 위험순위 결정)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • This paper presents a method to select contingency ranking considering voltage security problems in power systems. Direct method which needs not the detailed knowledge of the post contingency voltage at each bus is used. Based on system operator's experience and knowledge, the membership functions for the MVAR mismatch and allowable voltage violation are justified describing linguistic representation with heuristic rules. Rule base is used for the computation of severity index for each contingency by fuzzy inference. Contingency ranking harmful to the system is formed by the index for security evaluation. Compared with 1P-1Q iteration, this algorithm using direct method and fuzzy inference shows higher computation speed and almost the same accuracy. The proposed method is applied to model system and KEPCO pratical system which consists of 311 buses and 609 lines to show its effectiveness.

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • v.29 no.3
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.

AN ELIGIBLE KERNEL BASED PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.235-249
    • /
    • 2013
  • It is well known that each kernel function defines primal-dual interior-point method (IPM). Most of polynomial-time interior-point algorithms for linear optimization (LO) are based on the logarithmic kernel function ([9]). In this paper we define new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has $\mathcal{O}(({\log}\;p)^{\frac{5}{2}}\sqrt{n}{\log}\;n\;{\log}\frac{n}{\epsilon})$ and $\mathcal{O}(q^{\frac{3}{2}}({\log}\;p)^3\sqrt{n}{\log}\;\frac{n}{\epsilon})$ iteration complexity for large- and small-update methods, respectively. These are currently the best known complexity results for such methods.

Post-Silicon Tuning Based on Flexible Flip-Flop Timing

  • Seo, Hyungjung;Heo, Jeongwoo;Kim, Taewhan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.11-22
    • /
    • 2016
  • Clock skew scheduling is one of the essential steps to be carefully performed during the design process. This work addresses the clock skew optimization problem integrated with the consideration of the inter-dependent relation between the setup and hold times, and clock to-Q delay of flip-flops, so that the time margin is more accurately and reliably set aside over that of the previous methods, which have never taken the integrated problem into account. Precisely, based on an accurate flexible model of setup time, hold time, and clock-to-Q delay, we propose a stepwise clock skew scheduling technique in which at each iteration, the worst slack of setup and hold times is systematically and incrementally relaxed to maximally extend the time margin. The effectiveness of the proposed method is shown through experiments with benchmark circuits, demonstrating that our method relaxes the worst slack of circuits, so that the clock period ($T_{clk}$) is shortened by 4.2% on average, namely the clock speed is improved from 369 MHz~2.23 GHz to 385 MHz~2.33 GHz with no time violation. In addition, it reduces the total numbers of setup and hold time violations by 27.7%, 9.5%, and 6.7% when the clock periods are set to 95%, 90%, and 85% of the value of Tclk, respectively.

A Study on the load Flow Calculation for preserving off Diagonal Element in Jacobian Matrix (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • 이종기;최병곤;박정도;류헌수;문영현
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1081-1087
    • /
    • 1999
  • Load Flow calulation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning. operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to slove load flow equation and to modify above defects. And it preserve P-Q bus part of Jacobian matrix to shorten computing time. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical results and the same numbers of iteration obtained by Newton-Raphson method. The effect of computing time reduction showed about 28% , 30% , at each case of 39 bus, 118 bus system.

  • PDF

A Study on Characteristics of Null Pattern Synthesis Algorithm Using Quantum-inspired Evolutionary Algorithm (양자화 진화알고리즘을 적용한 널 패턴합성 알고리즘의 특성 연구)

  • Seo, Jongwoo;Park, Dongchul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.492-499
    • /
    • 2016
  • Null pattern synthesis method using the Quantum-inspired Evolutionary Algorithm(QEA) is described in this study. A $12{\times}12$ planar array antenna is considered and each element of the array antenna is controlled by 6-bit phase shifter. The maximum number of iteration of 500 is used in simulation and the rotation angle for updating Q-bit individuals is determined to make the individual converge to the best solution and is summarized in a look-up table. In this study we showed that QEA can satisfactorily synthesize the null pattern using smaller number of individuals compared with the conventional Genetic Algorithm.

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.