• 제목/요약/키워드: pyruvate kinase

검색결과 74건 처리시간 0.028초

4주간의 지구성 트레이닝과 thiamine 섭취가 골격근 내 PDH 활성에 미치는 영향 (The effect of thiamine and endurance training of 4weeks for PDH activity in skeletal muscle)

  • 황혜정;김지수;장지웅;임기원;정승삼;최성근
    • 한국체육학회지인문사회과학편
    • /
    • 제55권3호
    • /
    • pp.649-658
    • /
    • 2016
  • 본 연구는 지구성 트레이닝과 thiamine(thiamine tetrahydrofurfuryl disulfide: TTFD)의 투여가 골격근 내 글리코겐과 PDH(Pyruvate dehydrogenase), 그리고 PDH 활성에 관여하는 효소의 단백질인 PDK4(Pyruvate dehydrogenase kinase 4)와 PDP1(PDH phosphatase 1)의 발현에 어떠한 영향을 미치는지 알아보는 것을 목적으로 하였다. 6주령의 ICR 마우스를 대상으로 비운동집단(Sedentary; CON, TH), 운동집단(Exercise; EX, THEX)으로 나누어 4주간의 지구성 트레이닝과 체중 kg 당 50 mg의 thiamine을 경구투여 하였다. 4주간의 지구성 트레이닝은 간과 근육 내 glycogen의 저장량에 유의한 증가가 나타났지만 thiamine 투여에 따르는 차이는 나타나지 않았다. 마찬가지로 골격근 내 PDH와 PDH 조절에 관련한 PDK4, PDP1의 단백질 발현을 측정한 결과 4주간의 지구성 트레이닝에 따르는 효과는 관찰되었지만, thiamine 투여에 집단간 유의한 효과는 나타나지 않았다. 이러한 결과는 장기간 지구성 트레이닝에 따른 골격근의 적응으로 인하여 thiamine 투여에 따른 시너지 효과가 나타나지 않은 것으로 보인다. 따라서 추후 연구에서는 지구성 트레이닝의 기간을 고려한 thiamine의 섭취 타이밍 그리고 탄수화물의 복합투여에 따른 PDH와 관련 단백질의 분석이 필요할 것으로 보인다.

Molecular Cloning and Expression of Human Dihydrolipoamide Dehydrogenase-Binding Protein in Excherichia coli

  • Lee, Jeong-Min;Ryou, Chong-Suk;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.592-597
    • /
    • 2001
  • The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and H+. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase(E1), dihydrolipoamide acetyltransferase(E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, cloning and characterization of a gene for human E3BP have been carried out. A cDNA encoding the human E3BP was isolated by database search and cDNA library screening. The primary structure of E3BP has some similar characteristics with that of E2 in the lipoyl domain and the carboxyl-terminal domain, based on the nucleotide sequence and the deduced amino acid sequence. However, the conserved amino acid moiety including the histidine residue for acetyltransferase activity in E2 is not conserved in the case of human E3BP. The human E3BP was expressed and purified in E. coli. The molecular weight of the protein, excluding the mitochondrial target sequence, was about 50 kDa as determined by SDS-PAGE. Cloning of human E3BP and expression of the recombinant E3BP will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

  • PDF

Gene Cloning and Nucleotide Sequence of Human Dihydrolipoamide Dehydrogenase-Binding Protein

  • Lee, Jeongmin;Ryou, Chongsuk;Jeon, Bong Kyun;Lee, Poongyeon;Woo, Hee-Jong;Kwon, Moosik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권3호
    • /
    • pp.421-426
    • /
    • 2002
  • The pyruvate dehydrogenase complex (PDC), a member of $\alpha$-keto acid dehydrogenase complex, catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and $H^+$. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, we have partially cloned the gene for E3BP in human. Nine putative clones were isolated by human genomic library screening with 1.35 kb fragment of E3BP cDNA as a probe. For investigation of cloned genes, Southern blot analysis and the construction of the restriction map were performed. One of the isolated clones, E3BP741, has a 3 kb-SacI fragment, which contains 200 bp region matched with E3BP cDNA sequences. The matched DNA sequence encodes the carboxyl-terminal portion of lipoyl-bearing domain and hinge region of human E3BP. Differences between yeast E3BP and mammalian E3BP coupled with the remarkable similarity between mammalian E2 and mammalian E3BP were confirmed from the comparison of the nucleotide sequence and the deduced amino acid sequence in the cloned E3BP. Cloning of human E3BP gene and analysis of the gene structure will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

인삼 Saponin 분획의 고혈당강하작용에 관한 연구(II) (Study on the Hypoglycemic Action of Ginseng Saponin on Streptozotocin Induced Diabetic Rats (II))

  • 주충노;윤수희
    • Journal of Ginseng Research
    • /
    • 제16권3호
    • /
    • pp.198-209
    • /
    • 1992
  • The decreased activities of liver enzymes relating to carbohydrate metabolism such as glucose- 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and acetyl CoA carboxylase of streptozotocin injected rats were significantly modified by the intraperitoneal injection of ginseng saponin mixture and/or purified ginsenosides. However, several enzymes such as pyruvate kinase, malic enzyme and glycogen phosphorylase were not modified appreciably by the saponin administration, suggesting that the effect of ginseng saponin might be depend upon individual enzymes. Examination of liver enzymes by liver professing technique using perfusion buffer containing saponin (10-3%) showed that the ginseng saponin might stimulate insulin biosynthesis as well as the related enzyme activities.

  • PDF

Folic acid supplementation prevents high fructose-induced non-alcoholic fatty liver disease by activating the AMPK and LKB1 signaling pathways

  • Kim, Hyewon;Min, Hyesun
    • Nutrition Research and Practice
    • /
    • 제14권4호
    • /
    • pp.309-321
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: The present study aimed to evaluate the effects of folic acid supplementation in high-fructose-induced hepatic steatosis and clarify the underlying mechanism of folic acid supplementation. MATERIALS/METHODS: Male SD rats were fed control, 64% high-fructose diet, or 64% high-fructose diet with folic acid for eight weeks. Plasma glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, lipid profiles, hepatic lipid content, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS: The HF diet significantly increased hepatic total lipid and triglyceride (TG) and decreased hepatic SAM, SAH, and SAM:SAH ratio. In rats fed a high fructose diet, folic acid supplementation significantly reduced hepatic TG, increased hepatic SAM, and alleviated hepatic steatosis. Moreover, folic acid supplementation in rats fed high fructose enhanced the levels of phosphorylated AMP-activated protein kinase (AMPK) and liver kinase B (LKB1) and inhibited phosphorylation of acetyl coenzyme A carboxylase (ACC) in the liver. CONCLUSIONS: These results suggest that the protective effect of folic acid supplementation in rats fed high fructose may include the activation of LKB1/AMPK/ACC and increased SAM in the liver, which inhibit hepatic lipogenesis, thus ameliorating hepatic steatosis. The present study may provide evidence for the beneficial effects of folic acid supplementation in the treatment of non-alcoholic fatty liver disease.

Formation of Succinic Acid by Klebsiella pneumoniae MCM B-325 Under Aerobic and Anaerobic Conditions

  • Thakker Chandresh;Bhosale Suresh;Ranade Dilip
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.870-879
    • /
    • 2006
  • The present study describes the formation of succinic acid by a nonvirulent, highly osmotolerant Klebsiella pneumoniae strain SAP (succinic acid producer), its profile of metabolites, and enzymes of the succinate production pathway. The strain produced succinate along with other metabolites such as lactate, acetate, and ethanol under aerobic as well as anaerobic growth conditions. The yield of succinate was higher in the presence of $MgCO_3$ under $N_2$ atmosphere as compared with that under $CO_2$ atmosphere. Analysis of intracellular metabolites showed the presence of a smaller PEP pool than that of pyruvate. Oxaloacetate, citrate, and $\alpha$-ketoglutarate pools were considerably larger than those of isocitrate and fumarate. In order to understand the synthesis of succinate, the enzymes involved in end-product formation were studied. Levels of phosphoenolpyruvate carboxykinase, fumarate reductase, pyruvate kinase, and acetate kinase were higher under anaerobic growth conditions. Based on the profiles of the metabolites and enzymes, it was concluded that the synthesis of succinate took place via oxaloacetate, malate, and fumarate in the strain under anaerobic growth conditions. The strain SAP showed potential for the bioconversion of fumarate to succinate under $N_2$ atmosphere in the presence of $MgCO_3$. At an initial fumarate concentration of 10 g/l, 7.1 g/l fumarate was converted to 7 g/l succinate with a molar conversion efficiency of 97.3%. The conversion efficiency and succinate yield were increased in the presence of glucose. Cells grown on fumarate contained an 18-fold higher fumarate reductase activity as compared with the activity obtained when grown on glucose.

Induction of Apoptosis in Human Leukemic Cell Lines by Diallyl Disulfide via Modulation of EGFR/ERK/PKM2 Signaling Pathways

  • Luo, Nian;Zhao, Lv-Cui;Shi, Qing-Qiang;Feng, Zi-Qiang;Chen, Di-Long;Li, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3509-3515
    • /
    • 2015
  • Background: Diallyl disulfide (DADS) may exert potent anticancer action both in vitro and in vivo. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between DADS and pyruvate kinase (PKM2). Materials and Methods: $KG1{\alpha}$, a leukemia cell line highly expressing PKM2 was used with a cell counting kit (CCK)-8 and flow cytometry (FCM) to investigate the effects of DADS. Relationships between PKM2 and DADS associated with phosphorylation of EGFR, ERK1/2 and MEK, were assessed by western blot analysis. Results: In $KG1{\alpha}$ cells highly expressing PKM2, we found that DADS could affect proliferation, apoptosis and EGFR/ERK/PKM2 signaling pathways, abrogating EGF-induced nuclear accumulation of PKM2. Conclusions: These results suggested that DADS suppressed the proliferation of $KG1{\alpha}$ cells, providing evidence that its proapoptotic effects are mediated through the inhibition of EGFR/ERK/PKM2 signaling pathways.

Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells

  • Wang, Chun-Hua;Shyu, Rong-Yaun;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Lin, Yi-Yin;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.562-574
    • /
    • 2018
  • The tazarotene-induced gene 1 (TIG1) protein is a retinoidinducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.

Postmortem mRNA Expression Patterns in Left Ventricular Myocardial Tissues and Their Implications for Forensic Diagnosis of Sudden Cardiac Death

  • Son, Gi Hoon;Park, Seong Hwan;Kim, Yunmi;Kim, Ji Yeon;Kim, Jin Wook;Chung, Sooyoung;Kim, Yu-Hoon;Kim, Hyun;Hwang, Juck-Joon;Seo, Joong-Seok
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.241-247
    • /
    • 2014
  • Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.

인삼 사포닌이 효모의 몇 가지 해당 효소에 미치는 영향 (The Effect of Ginseng Saponin Fraction on Several Glycolytic Enzymes of Yeast Cell)

  • 강철호;주충노
    • Journal of Ginseng Research
    • /
    • 제10권2호
    • /
    • pp.200-208
    • /
    • 1986
  • It was attempted in this study to investigate the effect of ginseng saponin on several glycolytic enzymes of yeast cell and the following results were obtained. The amount of $CO_2$formed during the incubation of yeast cells in medium containing saponin fraction of Panax ginseng C.A. Meyer was greater than that of control cells and found that the $CO_2$ formation was greatest when the cells were grown in the medium containing 10$^{-3}$% of the saponin fraction, at which the uptake of inorganic phosphate and glucose consumption were also increased. Radioactivity study of several glycolytic intermediates of yeast cells cultured in the medium containing [U-$^{14}$C]-glucose showed that the radioactivity of fructose 6-phosphate of test cells was as much as 1.6times that of control group. On the other hand, the radioactivity of pyruvate of test cells was considerably decreased compared to control. Investigation of the effect of ginseng saponin on yeast hexokinase, phosphoglucose isomers, pyruvate kinase and perverted decarboxylase in vitro showed that the maximum activities of the above enzymes were observed when the concentration of ginseng saponin was 10-$^{-5}$% in the reaction mixture. It seemed that the ginseng saponin stimulated both glycolytic enzymes such as hexokinase, phosphoglucose isomers and perverted decarboxylase significantly.

  • PDF