• Title/Summary/Keyword: pv module

Search Result 600, Processing Time 0.029 seconds

Analysis of Photovoltaic module's Phenomena of aging with Acceleration Test (외부환경적 가속시혐에 의한 PV모듈의 열화성능 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1151-1152
    • /
    • 2006
  • In this paper, we examined 10 domestic samples of three different model using thermal, humidity freeze, thermal-endurance and damp heat test under IEC61215 photovoltaic module environmental endurance test condition. Three was almost no changes on power generation. Insulation resistance capacity was much higher than judgement standard but, showed unstable results depending on environmental test items. On external appearance test, there were two models which showed bubble, humidity penetration, seal melted frame phenomenon. From this results, the degree of aging under the external environment is a main cause that shortens photovoltaic module life time. So it is considered that the efforts for finding optimum condition of manufacturing process should be needed.

  • PDF

A Study on the Element Technology for PV Module Manufacturing (태양전지모듈 제조를 위한 요소기술연구)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Park, Kyung-Un;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1365-1367
    • /
    • 2003
  • In this paper, element technologies such as soldering. arrangement and lamination processes for photovoltaic module manufacture were examined and described as main processes. Especially solder paste and temperature condition in soldering process, loss factor in arrangement process and process conditions in lamination process are investigated to minimize the electrical loss. As a results, temperature condition in soldering process was found to be critical to contact resistance of electrode and life-time. Productivity of the process decreases dramatically by physical damage during arrangement process. Pressure level and press condition of upper chamber in lamination process were important parameters for the reliability. According to the test result of photovoltaic module, electrical properties dropped about $5{\sim}25%$ after 5 years.

  • PDF

High-efficiency 400W Module Integrated Converter for PV applications (고효율 400W급 태양광 Module Integrated Converter 개발)

  • Lee, Sung-Ho;Kim, Soo-A;Kim, Min-Sung;Goo, Tae-Hong;Kim, Soo-Hong;Choi, Jung-Hwan;Huh, Dong-Young;Kwon, Bong-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.289-290
    • /
    • 2015
  • 본 논문에서는 고효율, 저가격의 400W급 태양광 Module Integrated Converter (MIC)를 소개한다. 제안하는 MIC는 Interleaved flyback 토폴로지를 기반으로, 계통 주기 내에서 DCM과 CCM의 모든 동작 영역을 활용할 수 있게 설계되어 도통 손실 및 전력 용량을 개선한다. 또한 새로운 출력 제어 전류 알고리즘을 통해 기존의 Flyback의 CCM 영역에서의 제어문제를 해결하여 개발된 Flyback MIC의 실효성을 획득한다. 최종적으로 400W급 시제품을 제작하여 타당성 검증 및 결과를 제시한다.

  • PDF

Characteristics of Photovoltaic I-V and P-V According to the Irradiation and Module Temperature (태양광 시스템의 일사량과 모듈온도에 따른 I-V 및 P-V 특성에 관한 연구)

  • Shin, Hyeon-Man;Li, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.339-346
    • /
    • 2009
  • Photovoltaic (PV) energy is a renewable and harmless energy which offers many advantages. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current and DC power vary with the irradiation and module temperature, it is necessary to study the characteristics of photovoltaic I-V and P-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V and P-V according to the irradiation and the module temperature. The results show that the DC current and the DC power of the photovoltaic system are increased along with the increasing values of irradiation and module temperature.

Hail Impact Analysis of Photovoltaic Module using IEC Test (IEC 우박시험에 대한 태양광모듈 충돌 해석)

  • Park, Jung-Jae;Park, Chi-Yong;Ryu, Jae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • The loss in photovoltaic power due to hailstorms has been highlighted as a major issue in the sustained growth of the PV power plant industry. This study investigates the safety of a solar module by conducting a numerical analysis of a hail test according to the IEC 61215 standard. Our study aims to elucidate the detailed behavior between the ice and solar modules and the micro-cracks forming on solar modules during hailstorms. To analyze the impact of hail, we used the ANSYS AUTODYN software to evaluate the impact characteristics on a solar module with different front glass thicknesses. The simulations show that a solar module with a glass thickness of 4.0 mm results in excellent durability against hail. The results indicate the feasibility of using simulations to analyze and predict micro-cracks on solar modules tailored to various conditions, which can be used to develop new solar modules.

A Study on deformation and electrical efficiency of PV cell according to hot-air temperature at soldering process (솔더링 공정에서 열풍온도에 따른 PV셀의 변형량 및 전기효율에 관한 연구)

  • Lee, Jong-Hwan;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4065-4071
    • /
    • 2014
  • The analysis results of the temperature distribution and deformation at the PV cell with a thickness of $200{\mu}m$ according to hot-air temperature at the soldering process of a PV cell and ribbon tend to agree somewhat with the experimental measured values. The best result of the electrical efficiency appears in the module soldered at a hot-air temperature of $390^{\circ}C$. An analysis of the soldering PV cell with a thickness of $150{\mu}m$ at a hot-air temperature of $350^{\circ}C$ confirmed that the maximum deformation was approximately 5.9mm. As the temperature of hot air is set to decrease, the deformation is reduced and it is predicted that the electrical efficiency can be improved.

A Novel Simple Method to Abstract the Entire Parameters of the Solar Cell

  • Park, Minwon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.86-91
    • /
    • 2004
  • PV power generation, which directly converts solar radiation into electricity, contains numerous significant advantages. It is inexhaustible and pollution-free, silent, contains no rotating parts, and has size-independent electricity conversion efficiency. The positive environmental effect of photovoltaics is that it replaces the more polluting methods of electricity generation or that it provides electricity where none was available before. This paper highlights a novel simple method to abstract the entire parameters of the solar cell. In development, design and operation of PV power generation systems, a technique for constructing V-I curves under different levels of solar irradiance and cell temperature conditions using basic characteristic values of the PV module is required. Everyone who has performed manual acquisition and analysis of solar cell I versus V data would agree that the job is tedious and time-consuming. A better alternative is to use an automated curve tracer to print out the I versus V curves and compute the four major parameters; $V_{oc}$, $I_{sc}$, FF, and . Generally, the V-I curve tracer indicates only the commonly used solar cell parameters. However, with the conventional V-I curve tracer it is almost impossible to abstract the more detailed parameters of the solar cell; A, $R_{s}$ and $R_{sh}$ , which satisfies the user, who aims at the analysis of the development of the PV power generation system, that being advanced simulation. In this paper, the proposed method provides us with satisfactory results to enable us to abstract the detailed parameters of the solar cell; A, $R_s$ and $R_{sh}$.>.

Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules (태양전지모듈용 고내구성 저가형 백시트)

  • Pyo, Se Youn;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally friendly energy-conversion devices to generate electricity via the photovoltaic effect of semiconductors on solar energy. One of key elements in PV modules is "Backsheet," a multi-layered film to protect the devices from a variety of chemicals including water vapor. A representative Backsheet is composed of polyvinyl fluoride (PVF) and poly(ethylene terephthalate) (PET). PVF is relatively expensive, while showing excellent resistance to chemical attacks. Thus, it is necessary to develop alternatives which can lower its high production cost and guarantee lifetime applicable to practical PV modules at the same time. In this study, PET films with certain levels of crystallinity were utilized instead of PVF. Since it is well known that PET is suffering from trans-esterification and hydrolysis under a wide pH range, it is needed to understand decomposition behavior of the PET films under PV operation conditions. To evaluate their chemical decomposition behavior within a short period of times, accelerated decomposition test protocol is developed. Moreover, electrochemical long-term performances of the PV module employing the PET-based Backsheet are investigated to prove the efficacy of the proposed concept.

A Study on the Reduction of Building Energy Consumption and Generation of BIPV System According to the Increase of the Number of Floors in Office Building (사무소건물 층수 증가에 따른 BIPV 발전량과 건물에너지소비량 저감에 관한 연구)

  • Oh, Myung-Hwan;Yoon, Jong-Ho;Shin, Woo-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.36-41
    • /
    • 2011
  • BIPV system that can alternate building envelope by making materials of PV module should be considered in initial design step for applying PV system efficiently in office building. Mean while, area of the building skin also increases as the number of floors increases, but the valid area that can apply BIPV system in effect decreases relatively. Despite of this weak point, installing BIPV system is still being evaluated as the only measure left that can reduce electronic energy consumption in the building. Therefore, the impact on building energy consumption according to the increase of the number of floors when BIPV system is applied in the building was analyzed. And it will be used as basic information for application of BIPV in office building. Conomic about application of BIPV is interpreted to be secured within the 10 story high. Forover the 11 floors, the methods of increasing the contribution ratio produced by BIPV system through the optimization of install angle and increase in install area of south, high efficiency should be considered. The ways to reduce basic load by integrated design with another renewable energy besides BIPV should be found. Later, the study on the total building energy comsumption with PV generation according to the various type of the basic load and ratio of the width and depth will be performed based on this study.

  • PDF

A Basic Study on the Effect of the Wind Pressure according to Form on the Flat Roof mounted PV System (평지붕 PV거치 시스템의 형태에 따른 풍압영향에 관한 기초연구)

  • Yun, Doo-Young;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.105-112
    • /
    • 2013
  • The new renewable energy became popular as a clean and sustainable alternative energy under the circumstances that the entire world is facing severe abnormal climate due to the use of fossil fuel, and among which, solar energy can be obtained anywhere and is not difficult to apply it into the existing buildings, which makes it possible to be widely distributed. However, as PV module is installed into a single plate system, it shows structural weaknesses which are vulnerable to wind load and give loss to design elements in external appearance. Accordingly, this study planned one-step parallel system to complement the problems occurring from a single plate system and used STAR-CCM+ V.8 made by CD-Adapco, a computational fluid dynamics(CFD) simulation tool to measure wind load stability and support based on the design standards for a single plate system and one-step parallel system. Building height was limited to less than 10m and wind speed was given when increasing from 35m/s to 50m/s by 5m/s on PV system installed into the flat roof. In this case, our analysis suggested that step-one parallel system was in class 7-9 according to Beaufort's wind power classification, which did not have an impact on the fixed PV system, and the single plate system is considered to cause risks in designing wind speed in central districts because it is more than wind power class 12.