• Title/Summary/Keyword: purity analysis #4

Search Result 206, Processing Time 0.026 seconds

Development of analysis method for high purity nitrogen using GC-FID/Methanizer (GC-FID/Methanizer를 이용한 고순도 질소의 순도분석법 개발)

  • Jei, You;Jin Bok, Lee;Jin Seog, Kim;Woonjung, Kim;Kiryong, Hong
    • Analytical Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.249-255
    • /
    • 2022
  • In this study, a new method for the analysis of high-purity nitrogen was developed. A gas chromatography-flame ionization detector (GC-FID) was used for purity analysis. Certified reference materials (CRMs) at a level of 3 µmol/mol of carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), which may exist in high-purity nitrogen, were prepared using the gravimetric method, and these CRMs were used for purity analysis. In this new method, ultra-high-purity and high-purity nitrogen were used as carrier gases. The impurities in high-purity nitrogen were quantitatively analyzed by comparing the differences in the area values of the GC chromatograms of the prepared CRMs. We purchased liquid nitrogen and three bottles of nitrogen gas, which were produced by three different manufacturers, using high-purity nitrogen. Furthermore, to validate the developed purity analysis method, the fraction of impurities in high-purity nitrogen was compared with the results of the typical purity analysis method. The comparison results were consistent within the expanded uncertainties (k = 2).

Seed Purity Test and Genetic Diversity Evaluation Using RAPD Markers in Radish (Raphanus sativus L.)

  • Huh, Man-Kyu;Choi, Joo-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.346-350
    • /
    • 2009
  • The cultivated radish (Raphanus sativus L.) is a major vegetable crop in the world wide and fast-growing species that grows inhabitats of six continents. It is very important to determine hybrid seed purity in the production of hybrid Brassica vegetable seeds to avoid unacceptable contamination with self-inbred (sib) seeds. The use of random amplified polymorphic DNA (RAPD) markers for evaluating seed purity in $F_2$-hybrid radish cultivars demonstrated. One hundred eighty seeds from the F1 male and female harvest were subsequently screened for seed purity using 13 primers. The 13 primers result in 17 cultivar-specific bands and 23 variable RAPD bands scored for cultivar. RAPD analysis of hybrid seeds from the harvest revealed 128 seeds tested except underdevelopment and decayed seeds were sibs. Especially, $F_2$ hybrids of radish, OPC13, OPD20 were presented clear hybrid bands. It maintains higher than average level of genetic diversity compared with their correspondent parents. RAPD amplification of DNA extracted from germinated individuals from the female harvest reveal that 10 of 208 seeds tested were self-inbred (4.8%). RAPD analysis of hybrid seeds from the male harvest revealed 7 of the 208 seeds tested were sibs (3.4%). The RAPD may lead to a better insight in to the hybrid seed purity.

Preparation of particle-size-controlled SiC powder for single-crystal growth

  • Jung, Eunjin;Lee, Myung Hyun;Kwon, Yong Jin;Choi, Doo Jin;Kang, Seung Min;Kim, Younghee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • High-purity ${\beta}-SiC$ powders for SiC single-crystal growth were synthesized by direct carbonization. The use of high-purity raw materials to improve the quality of a SiC single crystal is important. To grow SiC single crystals by the PVT method, both the particle size and the packing density of the SiC powder are crucial factors that determine the sublimation rate. In this study, we tried to produce high-purity ${\beta}-SiC$ powder with large particle sizes and containing low silicon by introducing a milling step during the direct carbonization process. Controlled heating improved the purity of the ${\beta}-SiC$ powders to more than 99 % and increased the particle size to as much as ${\sim}100{\mu}m$. The ${\beta}-SiC$ powders were characterized by SEM, XRD, PSA, and chemical analysis to assess their purity. Then, we conducted single-crystal growth experiments, and the grown 4H-SiC crystals showed high structural perfection with a FWHM of about 25-48 arcsec.

The Effect of the Purity of Raw Materials on the Purity of Silicon Extracted by Solvent Refining and Centrifugation (용매정제법과 원심분리법으로 추출한 Si의 순도에 미치는 장입 원재료 순도의 영향)

  • Cho, Ju-Young;Seo, Kum-Hee;Kang, Bok-Hyun;Kim, Ki-Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.907-911
    • /
    • 2012
  • High purity silicon can be obtained from Al-Si alloys by a combination of solvent refining and centrifugation. Silicon purification by crystallization of silicon from an Al-Si alloy melt was carried out using 2N and 4N purity aluminum and 2N purity silicon as raw materials. The effect of the purity of raw materials on the final silicon ingot purity by centrifugation was investigated for an Al-50 wt% Si alloy. Alloys were melted using an electrical resistance furnace, and then poured into a centrifuging apparatus. A silicon lump like foam was obtained after centrifugation and was leached by an acid in order to get pure silicon flakes. Then silicon flakes were melted to make a silicon ingot using an induction furnace. The purities of the silicon flakes and silicon ingot were enhanced significantly compared to those of the raw materials of silicon and aluminum. The silicon ingot made of 4N aluminum and 2N silicon showed the lowest impurities.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.

Synthesis of Phospholene Oxide Catalysts for Hydrolysis Stabilizers (가수분해 방지제 제조용 Phospholene Oxide 촉매의 합성)

  • Lee, Jin-Ha;Lee, Chang-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.86-91
    • /
    • 2015
  • The MPPO (3-methyl-1-phenyl-2-phospholene-1-oxide) was prepared by using various polymerization inhibitors such as BHT (2,6-di-tert-butyl-4-methylphenol), TBC (4-tert-butylcatechol), and copper stearate. The MPPO was confirmed by the analysis using FTIR, $^1H$-NMR, and GC/MS regardless of the type of inhibitors. The yield of MPPO increased with the increase of reaction time, whereas the purity of MPPO decreased slightly. The yield and purity of MPPO increased with temperature, but the MPPO prepared by using copper stearate as a polymerization inhibitor exhibited no changes in the purity. The amount of inhibitors had no effect on the yield of MPPO. The purity of MPPOs increased with the amount of inhibitors, but the MPPO prepared by using BHT showed no changes of the purity. We found that the MPPO prepared by using copper stearate exhibited the highest catalytic activity for diphenylcarbodiimide synthesis.

1Determination of optical purity of N-acetyl-1-naphthylethylamine by chiral chromatography and NMR spectroscopy (키랄 크로마토그래피와 NMR 분광법에 의한 N-acetyl-1-naphthylethylamine의 광학순도 측정)

  • Jeong, Young-Han;Ryoo, Jae-Jeong
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.97-101
    • /
    • 2010
  • (R)-N-3,5-dinitrobenzoyl (DNB) phenylglycinol derived chiral selector was used as a HPLC chiral stationary phase (CSP) for the resolution of racemic N-acylnaphthylalkylamines. In this study, determination of optical purity was performed by both chiral chromatography and NMR spectroscopy by using the (R)-phenylglycinol derived chiral selector. The data of accuracy and precision of each optical purity value are calculated from the results of NMR and HPLC experiments by comparing with true value. Average error of the NMR method was +2.2% with average RSD of 4.54%, while that of HPLC method was -3.5% with average RSD of 3.23%.

Tandem laser-induced breakdown spectroscopy laser-ablation inductively-coupled plasma mass spectrometry analysis of high-purity alumina powder

  • Lee, Yonghoon;Kim, Hyang
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.121-130
    • /
    • 2019
  • Alumina is one of the most important ceramic materials because of its useful physical and chemical properties. Recently, high-purity alumina has been used in various industrial fields. This leads to increasing demand for reliable elemental analysis of impurities in alumina samples. However, the chemical inertness of alumina makes the sample preparation for conventional elemental analysis a tremendously difficult task. Herein, we demonstrated the feasibility of laser ablation for effective sampling of alumina powder. Laser ablation performs sampling rapidly without any chemical reagents and also allows simultaneous optical emission spectroscopy and mass spectrometry analyses. For six alumina samples including certified reference materials and commercial products, laser-induced breakdown spectroscopy (LIBS) and laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) analyses were performed simultaneously based on a common laser ablation sampling. LIBS was found to be useful to quantify alkali and alkaline earth metals with limits-of-detection (LODs) around 1 ppm. LA-ICP-MS could quantify transition metals such as Ti, Cu, Zn, and Zr with LODs in the range from a few tens to hundreds ppb.

Preparation of High Purity Ammonium Dinitramide and Its Liquid Mono-propellant (암모늄 디나이트라마이드염의 합성 및 액상연료화 연구)

  • Kim, Wooram;Park, Mijeong;Kim, Sohee;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.591-596
    • /
    • 2019
  • A recently developed propellant, ammonium dinitramide (ADN, $NH_4N(NO_2)_2$ is stable and safe at an ambient condition. However, it requires high purity for practical applications. A very little quantity of foreign impurities in ADN may cause clogging of thruster nozzles and catalyst poisoning for the use of a liquid propellant. Thus, several purification processes for precipitated ADN particles such as repetition extraction, activated carbon adsorption and low-temperature extraction were presented in this study. The purifying methods helped to improve the chemical purity as evaluated by FT-IR and UV-Vis spectroscopy in addition to ion chromatography (IC) analyses. Among the purification processes, adsorption was found to be the best, showing a final purity of 99.8% based on relative quantification by IC. Thermal analysis revealed an exothermic temperature of $148^{\circ}C$ for the synthesized liquid monopropellant, but rose to $188^{\circ}C$ when urea was added.

A pilot study of half-value layer measurements using a semiconductor dosimeter for intraoral radiography

  • Shun Nouchi;Hidenori Yoshida;Yusaku Miki;Yasuhito Tezuka;Ruri Ogawa;Ichiro Ogura
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.217-220
    • /
    • 2023
  • Purpose: This pilot study was conducted to evaluate half-value layer (HVL) measurements obtained using a semiconductor dosimeter for intraoral radiography. Materials and Methods: This study included 8 aluminum plates, 4 of which were low-purity (less than 99.9%) and 4 high-purity (greater than 99.9%). Intraoral radiography was performed using an intraoral X-ray unit in accordance with the dental protocol at the authors' affiliated hospital: tube voltage, 60 kVp and 70 kVp; tube current, 7 mA; and exposure time, 0.10 s. The accuracy of HVL measurements for intraoral radiography was assessed using a semiconductor dosimeter. A simple regression analysis was performed to compare the aluminum plate thickness and HVL in relation to the tube voltage (60 kVp and 70 kVp) and aluminum purity (low and high). Results: For the low-purity aluminum plates, the HVL at 60 kVp (Y) and 70 kVp (Y) was significantly correlated with the thickness of the aluminum plate (X), with Y=1.708+0.415X (r=0.999, P<0.05) and Y=1.980+0.484X (r=0.999, P<0.05), respectively. Similarly, for the high-purity aluminum plates, the HVL at 60 kVp (Y) and 70 kVp (Y) was significantly correlated with the plate thickness(X), with Y=1.696+0.454X (r=0.999, P<0.05) and Y=1.968+0.515X (r=0.998, P<0.05), respectively. Conclusion: This pilot study examined the relationship between aluminum plate thickness and HVL measurements using a semiconductor dosimeter for intraoral radiography. Semiconductor dosimeters may prove useful in HVL measurement for purposes such as quality assurance in dental X-ray imaging.