• Title/Summary/Keyword: pure infiniteness

Search Result 2, Processing Time 0.023 seconds

PRIMITIVE IDEALS AND PURE INFINITENESS OF ULTRAGRAPH C-ALGEBRAS

  • Larki, Hossein
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.1-23
    • /
    • 2019
  • Let ${\mathcal{G}}$ be an ultragraph and let $C^*({\mathcal{G}})$ be the associated $C^*$-algebra introduced by Tomforde. For any gauge invariant ideal $I_{(H,B)}$ of $C^*({\mathcal{G}})$, we approach the quotient $C^*$-algebra $C^*({\mathcal{G}})/I_{(H,B)}$ by the $C^*$-algebra of finite graphs and prove versions of gauge invariant and Cuntz-Krieger uniqueness theorems for it. We then describe primitive gauge invariant ideals and determine purely infinite ultragraph $C^*$-algebras (in the sense of Kirchberg-Rørdam) via Fell bundles.

Topologically free actions and purely infinite $C^{*}$-crossed products

  • Jeong, Ja-A
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.167-172
    • /
    • 1994
  • For a given $C^{*}$-dynamical system (A, G, .alpha.) with a G-simple $C^{*}$-algebra A (that is A has no proper .alpha.-invariant ideal) many authors have studied the simplicity of a $C^{*}$-crossed product A $x_{\alpha{r}}$ G. In [1] topological freeness of an action is shown to guarantee the simplicity of the reduced $C^{*}$-crossed product A $x_{\alpha{r}}$ G when A is G-simple. In this paper we investigate the pure infiniteness of a simple $C^{*}$-crossed product A $x_{\alpha}$ G of a purely infinite simple $C^{*}$-algebra A and a topologically free action .alpha. of a finite group G, and find a sufficient condition in terms of the action on the spectrum of the multiplier algebra M(A) of A. Showing this we also prove that some extension of a topologically free action is still topologically free.

  • PDF