• Title/Summary/Keyword: pure aluminum

Search Result 224, Processing Time 0.03 seconds

The Performance Characteristics of the Open Celled Aluminum Foam Applied for Heat Dissipation (다공성 알루미늄 방열핀의 성능특성 연구)

  • Kim, Jong-Soo;Lee, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2003
  • Experimental study for a porous aluminum heat dissipator/or heat sink made by casting method is conducted to evaluate the performance of the porous aluminum heat sinks. The parameters applied for the present study are the manufacturing method. various bonding materials for the bottom plate of heat sink, and their different material, pore size, etc.. The casting method for porous aluminum heat sink is suggested for the best performance of heat dissipation in this experiment. The bottom plate applied by melting aluminum is introduced and proved their excellent characteristics compared with brazing, soldering, and bonding methods. In the present experiment, aluminum with different conductivities, such as AC8A and pure aluminum, are tested and the pure aluminums with the higher conductivity than AC8A shows their improvement of the performance. And the proper dimensions related to the pore size and the height of porous aluminum heat sinks are proposed in the present study.

Microstructure and Mechanical Property of Aluminum Powder Compact by Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조된 알루미늄 분말성형체의 조직 및 기계적 성질)

  • 이성희
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.153-160
    • /
    • 2002
  • A nitrogen gas atomized aluminum powder was consolidated by powder-in sheath rolling method. A pure aluminum tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. The aluminum tube filled with the aluminum powder, first, was cold-rolled to the thickness of 6mm for performing, and then consolidated by the cold rolling and/or subsequent hot rolling at 360, 460 and $560^{\circ}C$. The aluminum powder compact fabricated by the sheath rolling showed high relative density more than 0.96 at any rolling conditions. The 0.2% proof stress increased with increasing hot rolling reduction and hot rolling temperature. Tensile strength was hardly affected by change in the hot rolling reduction, whereas it decreased with increasing hot rolling temperature. The powder compact showed the large elongation when cold rolling or hot rolling reduction was large. It was found that the sheath rolling was an effective method for consolidation of aluminum powder.

In-situ X-Ray Observation of Shrinkage Defect of the Aluminum Alloy Castings (X-ray 실시간 관찰에 의한 알루미늄 합금의 응고 결함 관찰)

  • Cho, In-Sung;Kim, Jung-In;Lim, Chae-Ho
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.174-178
    • /
    • 2010
  • In the present study, in-situ real-time observation with an X-ray radioscopic facility was carried out on pure aluminum and aluminum alloy solidification. The three kinds of aluminum alloys, such as pure aluminum, Al-8.5%Si alloy, commercial A356 (AC4C) alloys, were used in the present study. The formations of the shrinkage defects in the castings were visualized and different formation phenomena for different aluminum alloys were investigated.

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Friction Welding of Spheroidal Graphite Cast Iron and 2024 Aluminium Alloys using Insert Metal (삽입금속을 사용한 구상흑연주철과 2024 알루미늄합금의 마찰압접에 관한 연구)

  • KIM CHANG-GYU;KIM CHI-OK;KIM KWANG-ILL
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.76-81
    • /
    • 2003
  • Friction welding of GCD45 spheroidal graphite cast iron and 2024 aluminum alloy has been studied, especially in terms of the joint faces and strength of friction welding. For appropriate results of the friction welding of GCD45 graphite cast iron and 2024 aluminum alloy, an insert of A1050 pure aluminum metal was used. The joint strength of the A1050 pure aluminum insert approached the maximum strength of 165.7Mpa, compared to 128MPa for the joint between GCD45 graphite cast iron and A1050 pure aluminum without the insert metal. Maximum strength, 165.7Mpa, was possible for the following optimum conditions: 20MPa for the friction pressure, P1, 60MPa for the upsetting pressure, P2, 1 second for the friction time, t1, 3000rpm for the rotation, N, and 0.3 seconds for the brake time, tB.

An Electrochemical Evaluation on the Corrosion Property of Metallizing Film (용사 도막의 내식성에 관한 전기화학적 평가)

  • Shin, Joong-Ha;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.325-330
    • /
    • 2010
  • Many surface protection methods have been developed to apply for constructional steels used under severe corrosive environment. Thermal spray coating has been known to be an attractive technique due to its relatively high coating speed. Furthermore high corrosion resistance of coated film with thermal spray is required to expand its application. Four types of coated films(DFT:300 um) such as pure zinc, pure aluminum and two Al-Zn alloy (Al:Zn=85:15 and Al:Zn=95:5) onto the carbon steel (SS401) were prepared with arc spray, and the corrosion behavior of their samples were evaluated by electrochemical method in this study. Pure aluminum sample showed high corrosion resistance behavior exposed to sea water solution and pure zinc and alloy (Al:Zn=95:5) samples followed pure aluminum sample. The other alloy(Al:Zn=85:15) so called galvalume coated onto the carbon steel ranks the 4th corrosion resistance in this study. The results of porosity ratio of those samples by observation are well matched with the electrochemical data.

Fabrication of Aluminum Foams for High Profit Recycling of Aluminum Can Scraps (알루미늄 캔 스크랩의 고품위 재활용을 위한 발포금속의 제조)

  • Ha, Won;Kim, Shae-Kwang;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.203-208
    • /
    • 2005
  • The main emphasis of this study is to optimize the process variables for manufacturing aluminum foam materials by direct foaming of remelted aluminum scraps. Aluminum foams were fabricated from two different raw materials, pure aluminum and used beverage cans. For both cases, $TiH_{2}$ was used as a foaming agent. Calcium was added as a thickener for the foaming of pure aluminum and no thickener was added for that of used beverage Cans because the pre-existing oxides of the used beverage cans are used as a thickener. Calcium and $TiH_{2}$ content varies from 0.5wt.% to 2.0wt.% and from 0.5wt.% to 1.5wt.%, respectively. The processing conditions, such as the effect of calcium on the melt viscosity, foaming temperature, and the optimum amount of the foaming agent with regard to the melt viscosity were discussed.

Combined bending and web crippling of aluminum SHS members

  • Zhou, Feng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • This paper presents experimental and numerical investigations of aluminum tubular members subjected to combined bending and web crippling. A series of tests was performed on square hollow sections (SHS) fabricated by extrusion using 6061-T6 heat-treated aluminum alloy. Different specimen lengths were tested to obtain the interaction relationship between moment and concentrated load. The non-linear finite element models were developed and verified against the experimental results obtained in this study and test data from existing literature for aluminum tubular sections subjected to pure bending, pure web crippling, and combined bending and web crippling. Geometric and material non-linearities were included in the finite element models. The finite element models closely predicted the strengths and failure modes of the tested specimens. Hence, the models were used for an extensive parametric study of cross-section geometries, and the web slenderness values ranged from 6.0 to 86.2. The combined bending and web crippling test results and strengths predicted from the finite element analysis were compared with the design strengths obtained using the current American Specification, Australian/New Zealand Standard and European Code for aluminum structures. The findings suggest that the current specifications are either quite conservative or unconservative for aluminum square hollow sections subjected to combined bending and web crippling. Hence, a bending and web crippling interaction equation for aluminum square hollow section specimens is proposed in this paper.

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

Through-Thickness Variation of Strain and Microstructure of AA1050 Processed by High Speed Hot Rolling (고속열간압연가공된 AA1050의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.492-496
    • /
    • 2008
  • The through-thickness variations of strain and microstructure of high-speed hot rolled 1050 pure aluminum sheet were investigated. The specimens of 1050 aluminum were rolled at temperatures ranging from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched in water at an interval of 30ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Recrystallization occurred in the surface regions of the specimen rolled to reduction of 65% at $510^{\circ}C$, while only recovery occurred in the other regions.