• 제목/요약/키워드: pulverized coal

검색결과 187건 처리시간 0.035초

동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구 (Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement)

  • 황승민
    • 한국환경과학회지
    • /
    • 제27권5호
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.

Simulation Study on Measuring Pulverized Coal Concentration in Power Plant Boiler

  • Chen, Lijun;Wang, Yang;Su, Cheng
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.189-202
    • /
    • 2019
  • During thermal power coal-fired boiler operation, it is very important to detect the pulverized coal concentration in the air pipeline for the boiler combustion stability and economic security. Because the current measurement methods used by power plants are often involved with large measurement errors and unable to monitor the pulverized coal concentration in real-time, a new method is needed. In this paper, a new method based on microwave circular waveguide is presented. High Frequency Electromagnetic Simulation (HFSS) software was used to construct a simulation model for measuring pulverized coal concentration in power plant pipeline. Theoretical analysis and simulation experiments were done to find the effective microwave emission frequency, installation angle, the type of antenna probe, antenna installation distance and other important parameters. Finally, field experiment in Jilin Thermal Power Plant proved that with selected parameters, the measuring device accurately reflected the changes in the concentration of pulverized coal.

미분탄 연소에 따른 슬래깅 예측 모델 개발 및 검증 (Prediction of ash deposition propensity in a pilot-scaled pulverized coal combustion)

  • 장권우;한가람;허강열;박호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.87-90
    • /
    • 2013
  • In pulverized coal fired boilers, slagging and fouling may cause significant effect on the operational life of boiler. As increasing a consumption of low rank coal, slagging and fouling are main issues in pulverized coal combustion. This study predicts ash deposition propensity in a 0.7 MW pilot-scale furnace. Slagging model is employed as a User-Defined Function (UDF) of FLUENT and validated against measurement and prediction. The results show good agreement compared with experiment. There is need to development of a pulverized coal combustion and slagging analysis at low coal.

  • PDF

고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발 (Pulverized coal injection system development to raise combustion efficiencies of a blast furnace)

  • 안영진;강법성;곽남수;최경민;이민철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • 에너지공학
    • /
    • 제2권3호
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

석탄연소보일러 개조공사에 적용된 저NOx 미분탄 버너의 성능 평가 (Performance Evaluation of Low NOx Pulverized Coal Burner Applied in Coal Fired Boiler Refurbishment Project)

  • 김상현;송시홍;김혁제;김혁필
    • 한국연소학회지
    • /
    • 제11권4호
    • /
    • pp.22-26
    • /
    • 2006
  • To meet the environmental requirements, Doosan Heavy Industries & Construction Co., Ltd. (Doosan) had developed low NOx pulverized coal burner and it was applied to boiler retrofit project, 130 ton/hr coal fired cogeneration boiler, in 2003. NOx emissionand unburned carbon (UBC) in fly ash were measured during the commissioning tests. In this paper, the operation results of low NOx pulverized coal burner installed in 130 ton/hr coal fired boiler are presented. Burners emitted 160 ppm (@6 % $O_2$ basis) NOx and 3 % UBC with Chinacoal containing 0.86 % fuel nitrogen. And also it was shown that NOx emission rate of low NOx pulverized coal burner is linearly increased with fuel-nitrogen fraction of coal.

  • PDF

미분탄 연소의 점화 특성에 관한 연구 (Ignition behaviour of pulverized coal particle during coal combustion)

  • 이동방;김량균;송주헌;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.213-215
    • /
    • 2012
  • As one of the primary fuel sources, oxy-fuel combustion of coal is actively being investigated because of the climate changing problem such like the emission of green house gases. In this paper research about the pulverized coal technology, which is widely used in both power-generating and iron-making processes was studied to invesgate the ignition behaviour of pulverized coal particles during coal combustion as changing the ambient oxygen concentration of the particle. The ignition phenomenon of the coal particles fed into a laminar flow reactor was imaged with a Integrated charged-coupled device (ICCD) camera. The ignition points were determined throught the analysis of the images, and then the ignition delay times were able to be calculated. The experiment results show that a lower oxygen concentration increases the ignition delay time.

  • PDF

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF

연소중 미분탄의 발광 분석 및 입자 채집 관찰 (Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample)

  • 김대희;최상민
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.19-26
    • /
    • 2010
  • Combustion behavior of pulverized coal particles in a post-combustion gas reactor was investigated. Radiation emission from coal particles were analyzed by direct photograph and $CH^*$ radical chemiluminescence intensity. Coal particles were sampled during the combustion and were observed by scanning electron microscopy (SEM) and cross section micrograpy technique. Two coal types(one bituminous and one subbituminous coals typically used in the Korean power plants) were tested at typical combustion environment. Gas flow conditions were controlled to represent temperature and oxygen concentration. Experimental data were discussed along with conceptual descriptions of pulverized coal combustion, where particle heat-up, release and combustion of volatiles, and char combustion were sequentially progressed.

고로의 연소효율을 높이기 위한 화염영상 정밀 검출 및 화염제어 (Flame image precise measurement and flame control to raise combustion efficiencies of a blast furnace)

  • 김재열;이승철;곽남수;한재호
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.8-14
    • /
    • 2014
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) was developed for iron making. The combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational conditions are numerically predicted to determine the performance levels with regard to different locations of the nozzles in a blast furnace. A variety of parameters, including the pulverized coal quantities, oxygen amounts, inlet temperatures of the tuyeres, and the mass flow rate of coal carrier gas are taken into consideration. Also, in order to develop greater efficiency than those of existing coal injection systems, this study applies a flame measurement system using a charge-coupled device (CCD) camera and a frame grabber. It uses auto sampling algorithms from the flame shape information to determine the device for the optimal location control for PCI. This study finds further improvements of the blast furnace performance via the control of the PCI locations.